首页> 外文会议>International topical meeting on nuclear reactor thermal hydraulics >INTERFACE TRACKING SIMULATIONS OF BUBBLY FLOWS IN THE PWR RELEVANT GEOMETRIES
【24h】

INTERFACE TRACKING SIMULATIONS OF BUBBLY FLOWS IN THE PWR RELEVANT GEOMETRIES

机译:压水堆相关几何中气泡流动的界面跟踪模拟

获取原文

摘要

The advances in high performance computing (HPC) have allowed direct numerical simulations (DNS) approach coupled with interface tracking methods (ITM) to perform high fidelity simulations of turbulent bubbly flows in various complex geometries. In this work, we have chosen the geometry of the pressurized water reactor (PWR) core subchannel to perform a set of interface tracking simulations (ITS) with fully resolved turbulence. The presented research utilizes a massively parallel finite-element based code, PHASTA, for the subchannel geometry simulations of bubbly flow turbulence. The main objective for this research is to demonstrate the ITS capabilities in gaining new insight into bubble/turbulence interactions and assisting the development of improved closure laws for computational multiphase fluid dynamics (CMFD). Both single- and two-phase turbulent flows were studied within a PWR subchannel. The analysis of numerical results includes the mean gas and liquid velocity profiles, void fraction distribution and turbulent kinetic energy profiles. Two sets of flow rates and bubble sizes were used in the simulations. The chosen flow rates corresponded to the Reynolds numbers of 29,079 and 80,775 based on channel hydraulic diameter and mean velocity. The finite element unstructured grids utilized for these simulations include 53.8 million and 1.11 billion elements, respectively. This has allowed to fully resolving all the turbulence scales and the deformable interfaces of individual bubbles. For the two-phase flow simulations a 1% bubble volume fraction was used which resulted in 17 and 262 bubbles, respectively. In the larger simulation case the size of the resolved bubbles is 0.65 mm in diameter, and the mesh cell size is about 30 microns. Those large-scale simulations provide new level of details previously unavailable and were enabled by the excellent scaling performance of our two-phase flow solver and access to the state-of-the-art supercomputing resources. The presented simulations used up to 256 thousand processing threads on the IBM BG/Q supercomputer "Mira" (Argonne National Laboratory).
机译:高性能计算(HPC)的进步已使直接数值模拟(DNS)方法与接口跟踪方法(ITM)结合在一起,可以对各种复杂几何形状中的湍流气泡流进行高保真度模拟。在这项工作中,我们选择了压水堆(PWR)核心子通道的几何形状来执行一组具有完全解析的湍流的界面跟踪模拟(ITS)。提出的研究利用基于大规模并行有限元的代码PHASTA进行气泡流湍流的子通道几何模拟。本研究的主要目的是证明ITS的功能,以获取对气泡/湍流相互作用的新见解,并协助开发用于计算多相流体动力学(CMFD)的改进的闭合定律。在PWR子通道内研究了单相和两相湍流。数值结果的分析包括平均气体和液体速度曲线,空隙率分布和湍动能曲线。在模拟中使用了两组流速和气泡大小。基于通道水力直径和平均速度,所选流速对应于雷诺数29,079和80,775。用于这些模拟的有限元非结构化网格分别包括5380万和11.1亿个单元。这样就可以完全解决所有湍流尺度和单个气泡的可变形界面。对于两相流模拟,使用了1%的气泡体积分数,分别产生了17和262个气泡。在较大的模拟情况下,分辨出的气泡的直径直径为0.65毫米,网孔尺寸约为30微米。这些大规模仿真提供了以前无法获得的新级别的细节,这是由于我们两相流求解器的出色缩放性能以及对最新的超级计算资源的访问而实现的。所提供的仿真在IBM BG / Q超级计算机“ Mira”(阿贡国家实验室)上使用了多达256万个处理线程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号