【24h】

Wing Shape Sensing from Measured Strain

机译:通过测得的应变对机翼形状进行感应

获取原文

摘要

A new two-step theory is investigated for predicting the deflection and slope of an entire structure using strain measurements at discrete locations. In the first step, a measured strain is fitted using a piecewise least-squares curve fitting method together with the cubic spline technique. These fitted strains are integrated twice to obtain deflection data along the fibers. In the second step, computed deflection along the fibers are combined with a finite element model of the structure in order to interpolate and extrapolate the deflection and slope of the entire structure through the use of the System Equivalent Reduction and Expansion Process. The theory is first validated on a computational model, a cantilevered rectangular plate wing. The theory is then applied to test data from a cantilevered swept-plate wing model. Computed results are compared with finite element results, results using another strain-based method, and photogrammetry data. For the computational model under an aeroelastic load, maximum deflection errors in the fore and aft, lateral, and vertical directions are -3.2%, 0.28%, and 0.09%, respectively; and maximum slope errors in roll and pitch directions are 0.28% and -3.2%, respectively. For the experimental model, deflection results at the tip are shown to be accurate to within 3.8% of the photogrammetry data and are accurate to within 2.2% in most cases. In general, excellent matching between target and computed values are accomplished in this study. Future refinement of this theory will allow it to monitor the deflection and health of an entire aircraft in real time, allowing for aerodynamic load computation, active flexible motion control, and active induced drag reduction.
机译:研究了一种新的两步理论,用于通过在离散位置进行应变测量来预测整个结构的挠度和斜率。第一步,使用分段最小二乘曲线拟合方法和三次样条技术拟合测量应变。这些拟合的应变被积分两次以获得沿纤维的挠度数据。在第二步中,将沿纤维的计算挠度与结构的有限元模型结合起来,以便通过使用系统等效缩减和膨胀过程对整个结构的挠度和斜率进行内插和外推。该理论首先在计算模型(悬臂矩形板翼)上得到验证。然后将该理论应用于悬臂式翼板机翼模型的测试数据。将计算结果与有限元结果,使用另一种基于应变的方法的结果以及摄影测量数据进行比较。对于气动弹性载荷下的计算模型,前后方向,横向和垂直方向的最大挠度误差分别为-3.2%,0.28%和0.09%;侧倾和俯仰方向的最大倾斜度误差分别为0.28%和-3.2%。对于实验模型,尖端的偏转结果显示准确度在摄影测量数据的3.8%之内,在大多数情况下准确度在2.2%之内。通常,在这项研究中可以实现目标值与计算值之间的出色匹配。该理论的未来改进将使其能够实时监视整个飞机的偏转和健康状况,从而实现空气动力学载荷计算,主动柔性运动控制和主动感应减阻。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号