首页> 外文会议>Conference on metamaterials X >Plasmonic scattering nanostructures for efficient light trapping in flat CZTS solar cells
【24h】

Plasmonic scattering nanostructures for efficient light trapping in flat CZTS solar cells

机译:扁平CZTS太阳能电池有效光捕获等离子体散射纳米结构

获取原文

摘要

CZTS (Cu_2ZnSnS_4) is a promising absorbing layer in photovoltaic devices, due to it is low cost, abundancy, and non-toxicity. However, recent developments in CZTS solar cells showed efficiency reaching barely over 9%. The low efficiency of CZTS solar cells is the main obstacle for replacing conventional high cost bulk silicon photovoltaic with CZTS solar cells. Herein, we propose an alternative route for enhancing the efficiency of CZTS solar cells by using plasmonic scattering nanostructures on the top surface of the CZTS active layer. Metamaterial and plasmonic nanostructures can confine, absorb, guide or scatter incident light in the nanoscale. Each one of these phenomena totally depends on the material type, shape, and geometrical dimensions of the used nanostructures. Therefore, theoretical study of different shapes and materials can guide the highest performance of desired phenomena. In this work, we studied the effect of changing plasmonic metal nanopyramids height, periodicity, and tapering angle on light scattering inside active layer of the CZTS solar cells. By sweeping pyramids height from 100nm to 300nm, periodicity of closed nanopyramids from 100nm to 180nm, and using pyramid base length 25nm, 50nm, 75nm, we found good enhancements in light absorption inside the active layer over reference planar CZTS structures. Each plasmonic CZTS solar cell structure is designed and analyzed using there dimensional (3D) finite element method (FEM) simulations. Using periodic boundary condition for simulating a smaller cell, and with mesh size is ten times smaller than lowest simulated wavelength. Input port energy came from air mass 1.5 sun light over wavelength range from 300nm to 800nm. Also, we studied effect of replacing molybdenum with refractory plasmonics titanium nitride (TiN). TiN is a promising plasmonic material as it has a similar plasmonic properties to gold at visible wavelength. After using TiN, we found also enhancements in light absorption. These interesting results could open a new way of integrating plasmonic scattering nanostructure inside flat CZTS solar cell for higher efficiency.
机译:CZTS(CU_2ZNSS_4)是光伏器件中有希望的吸收层,由于它是低成本,丰度和非毒性。然而,CZTS太阳能电池的最新发展显示效率几乎没有9%。 CZTS太阳能电池的低效率是用CZTS太阳能电池更换传统的高成本散装硅光伏的主要障碍。在此,我们提出一种替代途径,用于通过在CZTS活性层的顶表面上使用等离子体散射纳米结构来提高CZTS太阳能电池的效率。超材料和等离子体纳米结构可以限制,吸收,引导或散射入射光在纳米级。这些现象中的每一个完全取决于所用纳米结构的材料类型,形状和几何尺寸。因此,不同形状和材料的理论研究可以指导所需现象的最高性能。在这项工作中,我们研究了改变等离子体金属纳米吡喃酰胺高度,周期性和逐渐变细角度在CZTS太阳能电池的有源层内的光散射上变化的影响。通过从100nm至300nm的金字塔高度,从100nm至180nm的封闭纳米吡喃菊酯的周期性,并使用金字塔基部长度为25nm,50nm,75nm,我们发现在有源层内的光吸收方面的光吸收良好的增强,通过参考平面CZTS结构。使用维度(3D)有限元方法(FEM)模拟设计和分析每个等离子体CZTS太阳能电池结构。使用用于模拟较小单元的周期性边界条件,并且对于网格尺寸是比最低模拟波长小的十倍。输入端口能量来自空气质量1.5太阳光线,波长范围为300nm至800nm。此外,我们研究了用耐火抵抗氮化钛(锡)替换钼的效果。锡是一种有前途的等离子体材料,因为它具有与可见波长的金色的类似等离子体性能。使用锡后,我们发现在光吸收中也有增强。这些有趣的结果可以开辟一定的新方式来集成扁平CZTS太阳能电池内部的血浆散射纳米结构以获得更高的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号