...
首页> 外文期刊>Journal of the Optical Society of America, B. Optical Physics >Light trapping plasmonic butterfly-wing-shaped nanostructures for enhanced absorption and efficiency in organic solar cells
【24h】

Light trapping plasmonic butterfly-wing-shaped nanostructures for enhanced absorption and efficiency in organic solar cells

机译:光捕获等离子体蝶形翼形纳米结构,用于增强有机太阳能电池的吸收和效率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper presents organic solar cells (OSCs) containing a one-dimensional (1D) periodic array of plasmonic butterfly-wing-shaped nanostructures, where silver butterfly-wing-shaped nanostructures are present in the back region of the active medium poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl]] with [6,6]-phenyl-C71-butric acid methyl ester. Finite-difference time-domain (FDTD) modeling was employed to simulate the interaction of light with the plasmonic nanostructures, and it was demonstrated that these plasmonic nanostructures lead to a broadband enhancement of light absorption in the active medium. These plasmonic nanostructures lead to enhanced scattering and trapping of the incident optical radiation at multiple wavelengths due to surface plasmon excitation at these wavelengths. This enhanced scattering leads to an increased path length of light, as well as an enhanced intensity of the overall electric field in the active layer of the OSC, which further leads to an increase in absorption. The plasmonic butterfly-wing-shaped nanostructures-containing solar cells were also simulated with indium tin oxide (ITO) nanogratings (NGs) placed on the top surface of the solar cells. It was seen that the presence of the ITO NGs leads to a further enhancement in absorption. In these OSCs containing both the plasmonic butterfly-wing-shaped nanostructures and the ITO NGs, the highest values of enhancements in the absorption and cell efficiency were calculated to be similar to 20% and similar to 25%, respectively. (C) 2019 Optical Society of America
机译:本文介绍了含有一维(1D)的等级蝶翼形纳米结构纳米结构阵列的有机太阳能电池(OSC),其中银蝶翼形纳米结构存在于活性介质多的后区[[4 ,8-双[(2-乙基己基)氧]苯并[1,2-B:4,5-B']二噻吩-2,6-二基] [3-氟-2- [(2-乙基己基)羰基] Thieno [3,4-B]噻吩-4,6-二基]用[6,6] - 苯基-C71-丁酸甲酯。采用有限差分时域(FDTD)建模来模拟光与等离子体纳米结构的光相互作用,并证明这些等离子体纳米结构导致活性培养基中光吸收的宽带增强。由于这些波长的表面等离子体激发,这些等离子体纳米结构导致在多个波长下提高入射光辐射的散射和捕获。这种增强的散射引线导致光的路径长度增加,以及OSC的有源层中的总电场的增强强度,这进一步导致吸收的增加。还用置于太阳能电池的顶部表面上的氧化铟锡(ITO)纳米疱疹(ITO)纳米疱疹(NGS)模拟含抗浆蝶形型纳米结构的太阳能电池。有人认为ITO NGS的存在导致吸收的进一步增强。在包含等离子体蝶形翼形纳米结构和ITO NGS的这些OSC中,计算吸收和细胞效率的增强值的最高值分别与20%且相似,分别类似于25%。 (c)2019年光学学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号