首页> 外文会议>American Control Conference >Shared autonomous vehicles: Model formulation, sub-problem definitions, implementation details, and anticipated impacts
【24h】

Shared autonomous vehicles: Model formulation, sub-problem definitions, implementation details, and anticipated impacts

机译:共享自动驾驶汽车:模型制定,子问题定义,实施细节和预期影响

获取原文

摘要

The emergence of self-driving vehicles holds great promise for the future of transportation. While it will still be a number of years before fully self-driving vehicles can safely and legally drive unoccupied on U.S. streets, once this is possible, a new transportation mode for personal travel looks set to arrive. This new mode is the shared autonomous vehicle (SAV), combining features of short-term on-demand rentals with self-driving capabilities. This presentation seeks to demonstrate how SAVs' potential may be assessed through agent-based modeling, as applied in Austin, TX. The framework sheds SAVs' current speed limitations established in early pilot SAV demonstrations by CityMobil2 and Google. A 12-mile by 24-mile regional geofence is employed to limit service within Austin to the areas with the greatest demand intensity. The simulation uses a sample of trips from the region's planning model to generate demand across traffic analysis zones and a 32,272-link network. Trips call on the vehicles in 5-minute departure time windows, with link-level travel times varying by hour of day based on MATSim's dynamic traffic assignment simulation software. A sizable degree of market share is assumed, though not market dominance, with adoption levels ranging from 2.3-11.1 percent of regional personal trip-making within the geofenced area. This simulation work also assumes that individual travelers may share rides through dynamic ride-sharing (DRS), which may pool two or more travelers with similar origins, destinations and departure times in the same vehicle. The presentation focuses on problem formulation and solution implementation details regarding SAV-traveler assignment, unoccupied vehicle relocation, and dynamic ridesharing. Model objectives in these problems seek to balance competing goals of minimalized total miles driven, as well as minimalized traveler wait (particularly long waits) and in-vehicle travel times. Multiple scenario variations are also tested, as - ell as a fleet size optimization procedure that seeks to maximize return on investment by a private operator. Results show that each SAV is able to replace around 10 conventional vehicles within the 24 mi × 12 mi area while still maintaining a reasonable level of service (as proxied by user wait times, which average just 1.0 minutes), though up to 8 percent more vehicle-miles traveled (VMT) may be generated if DRS is not utilized, due to SAVs journeying unoccupied to the next traveler, or relocating to a more favorable position in anticipation of next-period demand. Simulation results also indicate that DRS reduces total service times (wait times plus in-vehicle travel times) and travel costs for SAV users, even after accounting for extra passenger pick-ups, drop-offs and non-direct routings. While the base-case scenario (serving 56,324 person-trips per day, on average) showed that a fleet of SAVs allowing for DRS may result in vehicle-miles traveled that exceed person-trip miles demanded (due to anticipatory relocations of empty vehicles, between trip calls), it is possible to reduce overall VMT as trip-making intensity (SAV membership) rises and/or DRS users become more flexible in their trip timing and routing. Finally, these simulation results suggest that a private fleet operator paying $70,000 per new SAV could earn a 19% annual (long-term) return on investment while offering SAV services at $1.00 per mile of a non-shared trip (which is less than a third of Austin's average taxi cab fares).
机译:无人驾驶汽车的出现为运输的未来带来了广阔的前景。全自动无人驾驶汽车可以安全合法地在美国的街道上无人驾驶还需要很多年,但一旦有可能,一种新的个人出行交通工具将有望出现。这种新模式是共享自动驾驶汽车(SAV),它将短期按需租赁的功能与自动驾驶功能相结合。本演示文稿旨在展示如何通过基于代理的建模来评估SAV的潜力,如德克萨斯州奥斯汀所应用的那样。该框架摆脱了CityMobil2和Google在早期试点SAV演示中建立的SAV当前的速度限制。使用12英里乘24英里的区域地理围栏将奥斯汀范围内的服务限制到需求强度最大的区域。该模拟使用来自该区域规划模型的行程样本来生成跨交通分析区域和32,272链接网络的需求。出行在5分钟的出发时间窗口内呼叫车辆,基于MATSim的动态交通分配模拟软件,链接级的出行时间每天中的小时数不同。假定市场份额相当大,尽管不是市场主导地位,但采用程度占地理围栏区域内个人旅行的2.3-11.1%。这项模拟工作还假设各个旅行者可以通过动态乘车共享(DRS)共享乘车,该动态乘车共享可以将两个或多个具有相似出发地,目的地和出发时间的旅行者集中在同一辆车中。该演讲重点介绍了有关SAV出行者分配,无人驾驶的车辆重新安置和动态乘车共享的问题表述和解决方案实施细节。这些问题中的模型目标旨在平衡最小行驶总里程,最小的旅客等待时间(尤其是长时间的等待)和车载旅行时间之间的相互竞争的目标。此外,还测试了多种情景变化,例如,旨在寻求最大化私人运营商投资回报率的车队规模优化程序。结果表明,每辆SAV可以替换24英里×12英里区域内的大约10辆常规车辆,同时仍保持合理的服务水平(由用户等待时间代理,平均时间仅为1.0分钟),但最多可提高8%。如果未使用DRS,则可能会产生行驶的汽车行驶里程(VMT),这是由于SAV空载到下一个旅行者,或者由于预期下一个时期的需求而转移到更有利的位置。仿真结果还表明,即使考虑到额外的乘客上落,下车和非直接路线,DRS也会减少SAV用户的总服务时间(等待时间加车载旅行时间)和旅行成本。尽管基本情况(平均每天可服务56324人次)表明,允许DRS的SAV车队可能导致行驶的行驶里程超过了所需的个人行驶里程(由于空车的预期搬迁,两次旅行之间的间隔),随着旅行制定强度(SAV成员资格)的提高和/或DRS用户在旅行时间和路线上变得更加灵活,有可能降低整体VMT。最后,这些模拟结果表明,每辆新SAV支付70,000美元的私人车队运营商可以在非共享行程的每英里1.00美元的价格下提供SAV服务的同时,获得19%的年度(长期)投资回报。奥斯汀平均出租车费的三分之一)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号