首页> 外文会议>ASME international mechanical engineering congress and exposition >LASER DIAGNOSTICS OF PLASMA IN SYNTHESIS OF GRAPHENE-BASED MATERIALS
【24h】

LASER DIAGNOSTICS OF PLASMA IN SYNTHESIS OF GRAPHENE-BASED MATERIALS

机译:石墨烯基材料合成中的等离子体激光诊断

获取原文

摘要

Scalable production of carbon nanostructures to exploit their extraordinary properties and potential technological applications requires an improved understanding of the chemical environment responsible for their synthesis. In this study the spatial distribution of the rotational temperature of hydrogen is investigated via coherent anti-Stokes Raman scattering spectroscopy in the plasma of a microwave plasma chemical vapor deposition reactor under parametrically controlled conditions. The reactor pressure is varied from 10 to 30 Torr and the plasma generator power from 300 to 700 W, simulating the conditions required for the synthesis of carbon nanotubes, graphene and graphitic nanopetals. Temperature measurements are conducted within the plasma sheath and up to 6 mm away from the puck surface in order to elucidate the spatial distribution of temperature within and around the plasma region. The results indicate a linear increase in rotational temperature of H_2 with respect to the distance normal from the puck surface. Temperatures also increase with pressure. At 10 Torr the temperature range is approximately 850 -1150 K while at 30 Torr it is approximately 1200 -1650 K for a plasma generator power of 500 W. In addition, the temperature increases with plasma generator power and the introduction of other substances such as CH_4 and N_2. These findings may aid in understanding the function of the chemical composition and reactions in the plasma environment of these reactors which, to date, remains obscure. The spectroscopic techniques applied in this work may prove to be suitable in-situ monitoring methods for the scalable manufacturing of carbon nanomaterials.
机译:碳纳米结构的可扩展生产以利用其非凡的性能和潜在的技术应用需要对负责其合成的化学环境有更深入的了解。在这项研究中,通过参数控制条件下微波等离子体化学气相沉积反应器中等离子体的相干反斯托克斯拉曼散射光谱研究了氢气旋转温度的空间分布。模拟合成碳纳米管,石墨烯和石墨纳米花瓣所需的条件,反应器压力在10至30托之间变化,等离子体发生器的功率在300至700 W之间变化。温度测量是在等离子鞘内进行的,并且距圆盘表面的距离最大为6 mm,以便阐明等离子区域内和周围温度的空间分布。结果表明,相对于圆盘表面法线距离,H_2的旋转温度呈线性增加。温度也随着压力而升高。温度为10托时,对于500 W的等离子体发生器功率,温度范围约为850 -1150 K,而温度为30托时,温度范围约为1200 -1650K。此外,温度随着等离子体发生器功率的增加以及其他物质的引入而增加,例如CH_4和N_2。这些发现可能有助于理解这些反应器的等离子体环境中的化学组成和反应的功能,迄今为止,这些反应仍然不清楚。在这项工作中应用的光谱技术可能被证明是适用于可扩展制造碳纳米材料的原位监测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号