首页> 外文会议>Conference on microfluidics, bioMEMS, and medical microsystems XII >DNA separation and fluorescent detection in an optofluidic chip with sub-base-pair resolution
【24h】

DNA separation and fluorescent detection in an optofluidic chip with sub-base-pair resolution

机译:具有亚碱基对分辨率的Optof流体芯片中的DNA分离和荧光检测

获取原文

摘要

DNA sequencing in a lab-on-a-chip aims at providing cheap, high-speed analysis of low reagent volumes to, e.g., identify genomic deletions or insertions associated with genetic illnesses. Detecting single base-pair insertions/deletions from DNA fragments in the diagnostically relevant range of 150-1000 base-pairs requires a sizing accuracy of S < 10~(-3). Here we demonstrate S = 4×10~(-4). A microfluidic chip was post-processed by femtosecond-laser writing of an optical waveguide. 12 blue-labeled and 23 red-labeled DNA fragments were separated in size by capillary electrophoresis, each set excited by either of two lasers power-modulated at different frequencies, their fluorescence detected by a photomultiplier, and blue/red signals distinguished by Fourier analysis. Different calibration strategies were tested: a) use either set of DNA molecules as reference to calibrate the set-up and identify the base-pair sizes of the other set in the same flow experiment, thereby eliminating variations in temperature, wall-coating and sieving-gel conditions, and actuation voltages; b) use the same molecular set as reference and sample with the same fluorescence label, flown in consecutive experiments; c) perform cross-experiments based on different molecular sets with different labels, flown in consecutive experiments. From the results we conclude: Applying quadratic instead of linear fit functions improves the calibration accuracy. Blue-labeled molecules are separated with higher accuracy. The influence of dye label is higher than fluctuations between two experiments. Choosing a single, suitable dye label combined with reference calibration and sample investigation in consecutive experiments results in S = 4×10~(-4), enabling detection of single base-pair insertion/deletion in a lab-on-a-chip.
机译:在芯片上的DNA测序旨在提供低试剂卷的廉价,高速分析,例如,鉴定与遗传疾病相关的基因组缺失或插入。从150-1000个碱基对的诊断相关范围内检测来自DNA片段的单个基对插入/缺失需要S <10〜(-3)的尺寸精度。在这里,我们展示了S = 4×10〜(-4)。通过光学波导的飞秒激光写入微流体芯片。 12用毛细管电泳分离12个蓝色标记和23个红色标记的DNA片段,每组被两种激光器在不同频率下调制的两个激光器,它们由光电倍增器检测到的荧光,以及由傅立叶分析的蓝/红色信号进行荧光。测试了不同的校准策略:a)使用一组DNA分子作为参考,以校准设置并识别相同流动实验中的另一组的基部对尺寸,从而消除了温度,壁涂层和筛分的变化-gel条件和致动电压; b)使用与相同的荧光标记相同的分子集作为参考和样品,在连续实验中飞行; c)基于不同标签的不同分子集进行交叉实验,在连续实验中飞行。从结果我们得出结论:应用二次代替线性拟合功能,提高了校准精度。蓝色标记的分子以更高的精度分开。染料标签的影响高于两个实验之间的波动。选择单个合适的染料标签与参考校准和在连续实验中的样品调查结合,导致S = 4×10〜(-4),使得能够检测在芯片上的实验室中的单个基对插入/删除。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号