首页> 外文会议>Conference on microfluidics, bioMEMS, and medical microsystems XII >Three-dimensional optofluidic device for isolating microbes
【24h】

Three-dimensional optofluidic device for isolating microbes

机译:用于隔离微生物的三维晶体流体装置

获取原文

摘要

Development of efficient methods for isolation and manipulation of microorganisms is essential to study unidentified and yet-to-be cultured microbes originating from a variety of environments. The discovery of novel microbes and their products have the potential to contribute to the development of new medicines and other industrially important bioactive compounds. In this paper we describe the design, fabrication and validation of an optofluidic device capable of redirecting microbes within a flow using optical forces. The device holds promise to enable the high throughput isolation of single microbes for downstream culture and analysis. Optofluidic devices are widely used in clinical research, cell biology and biomedical engineering as they are capable of performing analytical functions such as controlled transportation, compact and rapid processing of nanolitres to millilitres of clinical or biological samples. We have designed and fabricated a three dimensional optofluidic device to control and manipulate microorganisms within a microfluidic channel. The device was fabricated in fused silica by ultrafast laser inscription (ULI) followed by selective chemical etching. The unique three-dimensional capability of ULI is utilized to integrate microfluidic channels and waveguides within the same substrate. The main microfluidic channel in the device constitutes the path of the sample. Optical waveguides are fabricated at right angles to the main microfluidic channel. The potential of the optical scattering force to control and manipulate microorganisms is discussed in this paper. A 980 nm continuous wave (CW) laser source, coupled to the waveguide, is used to exert radiation pressure on the particle and particle migrations at different flow velocities are recorded. As a first demonstration, device functionality is validated using fluorescent microbeads and initial trials with microalgae are presented.
机译:在微生物中分离和操纵有效方法的发展对于研究源自各种环境的未识别和尚未培养的微生物至关重要。新型微生物及其产品的发现有可能有助于开发新药和其他工业上重要的生物活性化合物。在本文中,我们描述了能够在使用光力的流动内重定向微生物的邻接流体装置的设计,制造和验证。该设备保持承诺,使单个微生物的高吞吐量隔离用于下游培养和分析。优化装置广泛应用于临床研究,细胞生物学和生物医学工程,因为它们能够进行分析功能,例如受控运输,紧凑且快速加工的纳米沥青至毫升临床或生物样品。我们设计并制造了一种三维optional流体装置,以控制和操纵微流体通道内的微生物。通过超快激光题字(ULI)在熔融二氧化硅中制造该装置,然后选择性化学蚀刻。 ULI的独特三维能力用于将微流体通道和波导集成在同一基板内。装置中的主要微流体通道构成样品的路径。光波导以直角制造到主体流体通道。本文讨论了控制和操纵微生物的光散射力的潜力。耦合到波导的980nm连续波(CW)激光源用于向颗粒上施加辐射压力,并记录不同流速下的颗粒迁移。作为第一次演示,使用荧光微珠验证装置功能,并提出了用微藻的初始试验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号