首页> 外文会议>International Conference on Unmanned Aircraft Systems >Rigid vs. flapping: The effects of kinematic formulations in force determination of a free flying Flapping Wing Micro Air Vehicle
【24h】

Rigid vs. flapping: The effects of kinematic formulations in force determination of a free flying Flapping Wing Micro Air Vehicle

机译:刚性与拍击:运动学公式在自由飞行拍击翼微型飞机力确定中的作用

获取原文

摘要

Several studies have focused on deriving kinematic formulations of simulated flapping wing micro air vehicles (FWMAV). However, very few used real-life flight data and none have compared the predicted aerodynamic forces and moments across different kinematic formulation principles. Hence, the present study compares and assesses the quality of simple equations of motion against complex multi-body formulations using real flight data. In particular, the position and attitude of an autonomous flying FWMAV was logged by an external high resolution visual tracking system. States were reconstructed using flight path reconstruction techniques and were used as inputs for the determination of the aerodynamic forces and moments that acted on the FWMAV. Two kinematic models of a 4 wing FWMAV were derived and used to compute the aerodynamic forces and moments: 1) simple Newton-Euler formulation of rigid aircraft equations of motion; 2) complex 5 body kinematic model using D'Alembert's principle. The results are presented for trimmed flight, as well as for system identification maneuvers characterized by doublet inputs on the rudder and elevator. These results show the difference between both formulations and indicate that rigid body kinematic forms can be used for FWMAV aerodynamic system identification, with the advantageous use in control design of iterative versions of ornithopters, showing an average correlation of 0.98 (out of 1) with more complex formulations. Multi-body kinematics, on the other hand, despite more time-expensive to derive, capture more contributions of the different FWMAV structures as well as the internal forces and moments (like driving motor torque), thus being more suitable for simulation and robust control of complex ornithopters.
机译:几项研究集中于推导模拟扑翼微型飞行器(FWMAV)的运动学公式。但是,很少使用的实际飞行数据,也没有一个可以比较不同运动学公式中预测的空气动力和力矩。因此,本研究使用真实的飞行数据,针对复杂的多体公式比较并评估了简单运动方程的质量。特别是,自主飞行的FWMAV的位置和姿态由外部高分辨率视觉跟踪系统记录。使用飞行路径重建技术重建状态,并将其用作确定作用在FWMAV上的空气动力和力矩的输入。推导了四个机翼FWMAV的两个运动学模型,并用于计算空气动力和力矩:1)刚性飞机运动方程的简单牛顿-欧拉公式; 2)使用D'Alembert原理的复杂5体运动学模型。结果显示为修整飞行,以及以舵和电梯上的双峰输入为特征的系统识别动作。这些结果显示了两种配方之间的差异,并表明可以将刚体运动学形式用于FWMAV气动系统识别,并且在迭代设计的飞行器的控制设计中具有优势,其平均相关性为0.98(满分为1),且相关性更高。复杂的配方。另一方面,多体运动学虽然花费更多的时间,但可以捕获不同FWMAV结构以及内力和力矩(如驱动电动机转矩)的更多贡献,因此更适合于仿真和鲁棒控制复杂的飞鸟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号