首页> 外文会议>IEEE Aerospace Conference >Autonomous Orbit Determination for CubeSat Adapted to Proximity Operations at an Asteroid
【24h】

Autonomous Orbit Determination for CubeSat Adapted to Proximity Operations at an Asteroid

机译:立方体的自主轨道确定适于在小行星处的邻近操作

获取原文

摘要

Deep space exploration has turned into multi-spacecraft operations where the navigation of auxiliary probes is a new challenge. We have developed, in a previous work, an autonomous on-board orbit determination concept for nanosatellites cruising in deep space and we adapt the concept here to proximity operations at a small solar system body. We consider a science case inspired by the Hera mission that will carry two CubeSats, considering here a CubeSat performing a fly-by of an asteroid at low altitude and low velocity. The aim is that the CubeSat determines its own orbit in full autonomy. The method uses an optical sensor and a Kalman filter. The sensor measures the absolute directions of selected bodies in front of background stars, the observed bodies may or may not be resolved. The measurements feed an Unscented Kalman Filter (UKF) well suited for strongly non-linear models. The performances in this work show an orbit reconstruction with a 3 σ accuracy below 1 km and even 500 m after 1.5 day at processing observations. The algorithm can be further improved if we combine optical measurements with radio link measurements performed between the CubeSat and its mothercraft. The assumptions on the optical and radio link performances are realistic at CubeSat scale. The accuracy is improved down to 15 meters at 3 σ. It uses moderate processing resources and shows great potential for improvements. Some instabilities are still reported that need to be investigated further. Nevertheless, this level of performance in the Hera context would allow to perform multiple fly-bys in strong autonomy and even make it possible to let the CubeSat determine by itself the mass of the moonlet Dimorphos, thus directly contributing to the scientific results.
机译:深度空间探索变成了多宇宙飞船操作,其中辅助探针的导航是一个新的挑战。在以前的工作中,我们开发了一个自主车载轨道轨道确定概念,用于深度空间中巡航的纳米卫星,并且我们将概念调整到小型太阳系体内的近距离操作。我们考虑一个受到赫拉特派团的科学案例,该案件将携带两个立方体,在此考虑在这里,在低空和低速下进行小行星进行蝇蝇的立方体。目的是CubeSat在完全自治中决定了自己的轨道。该方法使用光学传感器和卡尔曼滤波器。传感器测量背景恒星前面的选定体的绝对方向,观察到的身体可能或可能不会被解决。测量馈送良好适用于强烈非线性模型的无味卡尔曼滤波器(UKF)。这项工作中的性能显示出轨道重建,在处理观测下1.5天后,在1公里处的3σ精度下降3σ精度,甚至500米。如果我们将光学测量与无线电链路测量相结合,可以进一步提高该算法,并且在CubeSat和其母语之间执行无线电链路测量。光学和无线电链路性能的假设在CubeSat尺度上是逼真的。精度降低到15米处,3σ。它使用中等的处理资源并显示出巨大的改进潜力。仍然报告了一些不稳定性需要进一步调查。尽管如此,在HERA背景下的这种性能将允许在强大的自主权中进行多次飞行,甚至可以让立方体自行决定月亮二甲骨的质量,从而直接导致科学结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号