首页> 外文会议>IEEE Aerospace Conference >Low Thermal Loading and Operational Voltage Limits as Methods for Enabling MMRTG as a Power Source for Lunar Missions
【24h】

Low Thermal Loading and Operational Voltage Limits as Methods for Enabling MMRTG as a Power Source for Lunar Missions

机译:低热负载和操作电压限制为使MMRTG作为月球任务的电源的方法

获取原文

摘要

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is a readily available, long-lived, small scale, versatile power supply that can generate uninterrupted power on the moon during the long lunar nights. Lunar surface conditions, however, can be very harsh. Lunar daytime highs could cause the critical hot junction temperature (Thj) to exceed its operating limits, while the cold lunar nights can generate deep thermal cycles that could induce significant stress. An energy balance for objects on the lunar surface was performed, and an approximate lunar thermal sink for the MMRTG was obtained. This approximate sink does not incorporate potential self-shading from incident solar radation created by the MMRTG geometry. It is hypothesized, however, that the effect of this self-shading on the lunar surface will result in a decrease in operational temperatures. Recently developed thermal models have been improved so that they can calculate critical temperatures for an MMRTG on the lunar surface. Using the approximate lunar thermal sink, results from the model indicate that under the nominal operating conditions of 28 V and 2000 Wth of thermal inventory, the MMRTG can operate on the lunar surface while remaining under the maximum Thj by a margin of greater than 25 °C. Operating under worst-case nominal conditions, 28 V and 2048 Wth of thermal inventory, still allows operations on the lunar surface with over 15 °C of margin. Operating at higher voltages will increase temperatures within the MMRTG, while lower voltages are expected to cause Thj to decrease. An off-nominal 32 V system will still have at least 15 °C of margin if the system can be held at 2000 Wth or less of thermal inventory, but that margin shrinks to almost zero if the maximum specification of 2048 Wth happens to be implemented. Lowering the thermal inventory can lower Thj, but it will also decrease beginning-of-life power. The relationship between these three parameters appears to be linear, with a 48 Wth decrease in thermal inventory causing Thj and beginning-of-life power to decrease by 11.2 °C and 4.8 We, respectively. Missions that want to use MMRTG on the lunar surface should carefully consider the voltage they want to pull from the generator. If the operating voltage chosen is high, then a decrease in thermal inventory is one potential option for keeping the Thj below the operational maximum. Results also indicate that the MMRTG will experience a thermal cycle of $Deltamathrm{T}=47 {}^{circ}mathrm{C}$ during the lunar diurnal cycle. Empirical testing of a prototypic system or subsystem is anticipated to be the best method for determining the effect of lunar induced thermal cycles on the MMRTG. Currently, the Engineering Unit is available and is not a critical testing resource for NASA. As such, potential damage to the unit from thermal cycle testing would not deprive NASA of valuable life test data on the MMRTG. Other thermal cycle testing options include an MMRTG thermoelectric module mounted in a suitable testing frame.
机译:多功率放射性同位素热电发电机(MMRTG)是一种容易获得的,长的,小规模的多功能电源,可以在长期的月亮期间在月球上产生不间断的电源。然而,月球表面条件可能非常苛刻。农历白天高度可能导致关键的热插拔温度(T hj )超过其运行限制,而寒冷的月夜可以产生深度热循环,这可能会引起重大压力。进行了月球表面上对象的能量平衡,获得了MMRTG的近似月球热汇。这种近似水槽不会包含由MMRTG几何形状创建的入射太阳辐射的潜在的自阴影。然而,假设这种自阴影对月球表面上的效果将导致操作温度下降。最近开发的热模型已经提高,使得它们可以计算月球表面上MMRTG的临界温度。使用近似月球热宿,模型的结果表明,在28 V和2000W的标称操作条件下 th 热量库存,MMRTG可以在月球表面上运行,同时保持在最大T下 hj 边缘大于25°C。在最坏情况下在最坏的标称条件下运行,28 V和2048 W th 热量库存,仍然允许在月球表面上的操作,超过15°C的边距。在较高电压下操作将增加MMRTG的温度,而较低的电压会导致T hj 减少。如果系统可以在2000 W中举行,则偏离标称32 V系统仍有至少15°C的边距 th 或者较少的热量库存,但如果2048 W的最大规格,则边际缩小到几乎为零 th 碰巧被实施。降低热量库存可以降低 hj ,但它也会减少寿命的力量。这三个参数之间的关系似乎是线性的,带有48 W. th 减少热量库存导致t hj 和寿命开始,分别减少11.2°C和4.8我们。想要在月球表面上使用MMRTG的任务应该仔细考虑他们想要从发电机中拉出的电压。如果选择的工作电压很高,则热量库存的减少是保持T的一个潜在选择 hj 低于操作最大值。结果还表明MMRTG将经历热循环 $ delta mathrm {t } = 47 {} ^ { cir} mathrm {c} $ 在月球昼夜周期。预计原型系统或子系统的经验测试是最佳方法,用于确定月球诱导热周期对MMRTG的影响。目前,工程单元可用,不是NASA的关键测试资源。因此,从热循环测试中对单位的潜在损坏不会剥夺NASA在MMRTG上的宝贵寿命测试数据。其他热循环测试选项包括安装在合适的测试框架中的MMRTG热电模块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号