首页> 外文会议>ASME Internal Combustion Engine Division technical conference >APPLICATION OF MODEL REDUCTION TECHNIQUES WITHIN CUMMINS INC.
【24h】

APPLICATION OF MODEL REDUCTION TECHNIQUES WITHIN CUMMINS INC.

机译:康明斯公司内部模型缩减技术的应用

获取原文

摘要

For the past decade Cummins Inc. have increased the use of standard Finite Element Analysis (FEA) techniques to drive the design of its products. However, as FEA models are not scalable to the limits of hardware, running traditional FEA, especially on large High Horse Power (HHP) engine structures' assemblies, both reliably and within a reasonable time frame was found to be not possible. This led to carrying out numerous analyses with fewer parts and assumed boundary conditions. This strategy ignores effects due to system vibration of the assembly. To reduce the risk of failures on complex assemblies, high speed engines required a more accurate analytical prediction of modal stresses on a system level. To increase the capacity of running system level analyses, a structured approach was followed and the Model Reduction Techniques Functional Excellence mini team was set up to develop methods and train analysts. The team have been using Six Sigma tools to carry out voice of the customer interviews in order to define the analytical requirements for running models for large complex structures (>20 million degree of freedom). This consists of brainstorming concepts to select solutions based on advanced analytical Substructuring techniques to best fit requirements. The benefits of the new process include a significant reduction in solve time, the ability to carry out system analysis, to follow an efficient working practice using a modular approach, to allow parallel processing globally and secure intellectual property rights when working with suppliers and customers of the Cummins Inc. products. This paper shares experience on applying model reduction techniques following a structured approach and highlights computing and training resources for an analysis team.
机译:在过去的十年中,康明斯公司增加了使用标准有限元分析(FEA)技术来推动其产品设计的过程。但是,由于有限元分析模型无法扩展到硬件的极限,因此运行传统的有限元分析,尤其是在大型高马力(HHP)发动机结构的组件上运行,既不可能可靠又无法在合理的时间范围内进行。这导致以较少的零件和假定的边界条件进行了大量分析。该策略忽略了由于组件的系统振动引起的影响。为了降低复杂组件发生故障的风险,高速发动机需要在系统级别上对模态应力进行更准确的分析预测。为了增加正在运行的系统级分析的能力,采用了结构化方法,并成立了Model Reduction Techniques功能卓越迷你小组,以开发方法和培训分析人员。该团队一直在使用“六西格码”工具进行客户访谈的声音,以定义大型复杂结构(> 2000万自由度)运行模型的分析要求。这包括集思广益的概念,以基于高级分析子结构技术来选择解决方案,以最佳地满足需求。新流程的好处包括大大减少了解决时间,进行系统分析的能力,遵循采用模块化方法的有效工作惯例,允许在全球进行并行处理并在与供应商和客户合作时保护知识产权的能力。康明斯公司的产品。本文分享了按照结构化方法应用模型约简技术的经验,并重点介绍了分析团队的计算和培训资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号