首页> 外文会议>ASME Pressure Vessels and Piping conference >Simulating Residual Stresses using a Modified Wedge-Loaded Compact Tension Specimen
【24h】

Simulating Residual Stresses using a Modified Wedge-Loaded Compact Tension Specimen

机译:使用修改的楔形加载紧凑型拉伸试样模拟残余应力

获取原文

摘要

Residual stresses are induced in components when fabrication processes produce internal stresses or local deformation and cause accelerated creep damage and cracking during service at elevated temperatures. A method of inducing residual stresses in laboratory fracture specimens is proposed where an oversized wedge is inserted into the crack mouth of a compact tension, C(T), type specimen. In this way the extent of internal stresses can be controlled in order to minimise the level of crack tip plasticity which inherently reduces the remaining strain to failure. Numerical simulations of wedge insertion into specimens made of 316H austenitic stainless steel have been developed to calibrate the wedge insertion process. These models have been experimentally validated using surface strains measured during the wedge insertion, using Digital Image Correlation (DIC), and Neutron Diffraction (ND) measurements. The validated Finite Element (FE) model is used to determine the wedge insertion depth required to maximise the residual stresses without causing significant crack tip plasticity. The validated numerical simulation is used to determine the wedge insertion depths of further wedge-loaded C(T) specimens made from uniformly pre-compressed 316H stainless steel. The reduced creep ductility of this material increases the rate of crack growth under creep conditions. This method of inducing residual stresses with limited crack tip plasticity allows creep crack growth under simulated secondary loading conditions to be investigated without the influence of non-uniform creep ductility caused by work hardening.
机译:当制造过程中产生内应力或局部变形并在高温下使用时,会引起加速蠕变损伤和开裂,从而在组件中产生残余应力。提出了一种在实验室断裂试样中诱导残余应力的方法,其中将一个超大楔形物插入紧凑张力C(T)型试样的裂纹口中。以此方式,可以控制内部应力的程度,以使裂纹尖端可塑性的水平最小化,这从本质上减少了残余的失效应变。已经开发出了将楔形物插入由316H奥氏体不锈钢制成的样本中的数值模拟,以校准楔形物的插入过程。这些模型已经通过楔形插入过程中测量的表面应变,数字图像相关性(DIC)和中子衍射(ND)测量进行了实验验证。经过验证的有限元(FE)模型用于确定在不引起明显的裂纹尖端可塑性的情况下最大化残余应力所需的楔形插入深度。经过验证的数值模拟用于确定由均匀预压缩316H不锈钢制成的其他楔形加载C(T)标本的楔形插入深度。这种材料的蠕变延展性降低,会增加蠕变条件下的裂纹扩展速率。这种在有限的裂纹尖端塑性下产生残余应力的方法允许研究模拟的二次载荷条件下的蠕变裂纹扩展,而不会受到加工硬化导致的非均匀蠕变延展性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号