首页> 外文会议>Aviation technology, integration, and operations conference >Probabilistic and Coordinated Traffic Flow Management Optimization
【24h】

Probabilistic and Coordinated Traffic Flow Management Optimization

机译:概率协调交通流管理优化

获取原文

摘要

Traffic Flow Management (TFM) implements traffic management initiatives (TMIs) such as Ground Delay Programs (GDPs) and TFM reroutes in order to manage airport and airspace-sector traffic demand. TMIs are not necessarily optimal in terms of minimizing overall delays because they are often designed with a degree of conservativeness to account for the uncertainty in traffic demand and capacity forecasts. Moreover, in the current manual TMI design process each TMI is typically designed to address only one congestion event independent of other disparate congestion events that might be affecting the same set of flights. Researchers have developed TFM optimization algorithms to minimize National Airspace System (NAS)-wide TFM delays while ensuring that all NAS-wide congestion events are addressed. The Bertsimas Stock-Patterson (BSP) algorithm is one example of such an approach. Developing methods for adapting research TFM algorithms into practical TFM decision support aids is the topic of this research paper. Mainly, we focus on two modifications to the BSP algorithm to alleviate some of its undesirable (from the perspective of real-world implementation) characteristics and to make its controls practically implementable in a form similar to current-day TMIs. First, we modify the original BSP formulation to account explicitly for uncertainty within the BSP optimization. We call this the Probabilistic-BSP (P-BSP) formulation. P-BSP alleviates the original BSP's sensitivity to traffic-demand/capacity forecasts and provides the robustness necessary in real-time applications. Second, we modify the BSP formulation to enhance the coordination between strategic TFM airborne and ground delays. This modification reduces unnecessary airborne delays caused by the lack of coordination in current-day TMIs. We call this formulation the Coordinated BSP (C-BSP). We present results from simulations showing the benefits of the P-BSP formulation as compared to the original BSP using a real-day, NAS-wide traffic and capacity scenario. We are currently investigating the benefits of the C-BSP formulation.
机译:交通流管理(TFM)实施交通管理计划(TMI),例如地面延误程序(GDP)和TFM改航,以管理机场和空域部门的交通需求。 TMI在最大限度地减少总体延迟方面不一定是最佳的,因为它们通常设计时具有一定的保守性,以解决流量需求和容量预测中的不确定性。此外,在当前的手动TMI设计过程中,通常将每个TMI设计为仅解决一个拥塞事件,而与可能影响同一组航班的其他不同的拥塞事件无关。研究人员已经开发出TFM优化算法,以最大程度地减少美国国家空域(NAS)范围内的TFM延迟,同时确保解决所有NAS范围内的拥塞事件。 Bertsimas Stock-Patterson(BSP)算法就是这种方法的一个示例。开发使研究TFM算法适应实际TFM决策支持工具的方法是本研究的主题。主要地,我们集中于对BSP算法的两次修改,以减轻其某些不良(从现实世界实现的角度来看)特性,并使它的控件以类似于当今TMI的形式切实可行地实现。首先,我们修改原始的BSP公式,以明确考虑BSP优化中的不确定性。我们称其为概率BSP(P-BSP)公式。 P-BSP减轻了原始BSP对流量需求/容量预测的敏感性,并提供了实时应用程序所需的鲁棒性。第二,我们修改BSP公式,以增强战略性TFM机载和地面延误之间的协调。这种修改减少了由于当今TMI缺乏协调而造成的不必要的空中延误。我们称此公式为协调BSP(C-BSP)。我们提供了模拟结果,显示了使用NAS实时流量和容量场景的P-BSP配方与原始BSP相比的优势。我们目前正在研究C-BSP配方的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号