首页> 外文会议>Offshore Technology Conference >Design and Installation of an Innovative Tension Leg Platform for 2 MW Offshore Wind Turbine at Baltic Sea
【24h】

Design and Installation of an Innovative Tension Leg Platform for 2 MW Offshore Wind Turbine at Baltic Sea

机译:波罗的海2兆瓦近海风力涡轮机创新张力平台的设计与安装

获取原文

摘要

The Offshore Wind Resources in deep water, but also the currently experienced issues with conventional foundations, are driving the solution requirements for new offshore wind power platforms. The latest monitoring results of German offshore wind farms show the challenges the industry is facing. Ecological impacts as well as foundation technology issues are forcing the sector to look for alternatives. The presentation will introduce a technology of a floating TLP-structure with a specific mooring line configuration as an innovative foundation concept for offshore wind turbines suited for water depths greater than 30 meters. The unique aspect of the GICON TLP is its modular, frame-work structure which allows buoyancy and load transfer functions to be decoupled from each other and instead be applied to the specific structural elements. In contrast to classic TLP designs and semi-submersible floaters, additional stabilizing effect achieved by this additional bracing minimizes the movement of the entire system. Due to this stable behavior of the TLP standard offshore turbines as currently available in the market should be usable for this platform. Furthermore results from model basin tests will be described. Also the comparison of calculated and experimental data obtained by extensive tank experiments with a scale model of an offshore turbine at Maritime Research Institute Netherlands (MARIN) in summer 2013 will be presented. These experiments include wind and wave loads that represent different sea states of the proposed location for the full scale prototype. In numerical simulations the dynamic behavior of the TLP under linked hydrodynamic and aerodynamic loading is taken into account also regarding different geometric configurations of the mooring line system and various types of anchorage systems at the sea floor. Using characteristic Campbell-diagrams structural stiffness of each component is optimized aiming at a soft-stiff design of the TLP-structure. The results of the scaled tests at MARIN have confirmed that a superposition of internal forces of the moored structure in operation for wind and wave loads can be assumed. Numerical modeling validation is confirmed by tank tests. Data and video from the tank tests will be shared as part of the presentation. GICON researchers plan to install a full-scale pilot plant in the German Baltic Sea in 2016.
机译:深水中的海上风力资源,也是目前经历过的传统基金会的问题,正在推动新的海上风电平台的解决方案要求。德国海上风电场的最新监测结果表明该行业面临的挑战。生态影响以及基础技术问题正在强迫该部门寻找替代品。该演示文稿将推出一种浮动TLP结构的技术,具有特定的系泊线配置,作为适合水深的海上风力涡轮机的创新基础概念,适用于30米的水深。 Gicon TLP的独特方面是其模块化,框架工作结构,其允许浮力和负载传递函数彼此分离,而是应用于特定结构元件。与经典的TLP设计和半潜式漂浮物相比,通过这种附加支撑实现的额外稳定效果可最大限度地减少整个系统的运动。由于这种平台目前可用的TLP标准离岸涡轮机的这种稳定行为,应适用于该平台。此外,将描述模型盆测试的结果。此外,2013年夏季夏季荷兰海洋研究所荷兰荷兰(Marin)的广泛坦克实验提供的计算和实验数据的比较将展示。这些实验包括风波载荷,其代表完整的地位的不同海区的典型原型。在数值模拟中,考虑到在海底的系泊线系统和各种类型的锚固系统的不同几何配置中考虑了TLP下的TLP的动态行为。使用每个组件的特征坎贝尔图的结构刚度是针对TLP结构的软硬化设计的优化。 Marin的缩放测试的结果证实,可以假设在风和波浪负荷运行中叠加的内置结构的内部力。数值建模验证由坦克测试确认。来自坦克测试的数据和视频将作为演示的一部分共享。 Gicon研究人员计划在2016年在德国波罗的海安装一个全级试点植物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号