首页> 外文会议>Offshore Technology Conference;ExxonMobil;FMCTechnologies;Schlumberger >Design and Installation of an Innovative Tension Leg Platform for 2 MW Offshore Wind Turbine at Baltic Sea
【24h】

Design and Installation of an Innovative Tension Leg Platform for 2 MW Offshore Wind Turbine at Baltic Sea

机译:波罗的海2 MW海上风力涡轮机的创新张力腿平台的设计和安装

获取原文
获取原文并翻译 | 示例

摘要

The Offshore Wind Resources in deep water, but also the currently experienced issues with conventionalrnfoundations, are driving the solution requirements for new offshore wind power platforms. The latestrnmonitoring results of German offshore wind farms show the challenges the industry is facing. Ecologicalrnimpacts as well as foundation technology issues are forcing the sector to look for alternatives. Thernpresentation will introduce a technology of a floating TLP-structure with a specific mooring linernconfiguration as an innovative foundation concept for offshore wind turbines suited for water depthsrngreater than 30 meters. The unique aspect of the GICON TLP is its modular, frame-work structure whichrnallows buoyancy and load transfer functions to be decoupled from each other and instead be applied tornthe specific structural elements. In contrast to classic TLP designs and semi-submersible floaters,rnadditional stabilizing effect achieved by this additional bracing minimizes the movement of the entirernsystem. Due to this stable behavior of the TLP standard offshore turbines as currently available in thernmarket should be usable for this platform. Furthermore results from model basin tests will be described.rnAlso the comparison of calculated and experimental data obtained by extensive tank experiments with arnscale model of an offshore turbine at Maritime Research Institute Netherlands (MARIN) in summer 2013rnwill be presented. These experiments include wind and wave loads that represent different sea states ofrnthe proposed location for the full scale prototype. In numerical simulations the dynamic behavior of thernTLP under linked hydrodynamic and aerodynamic loading is taken into account also regarding differentrngeometric configurations of the mooring line system and various types of anchorage systems at the searnfloor. Using characteristic Campbell-diagrams structural stiffness of each component is optimized aimingrnat a soft-stiff design of the TLP-structure. The results of the scaled tests at MARIN have confirmed thatrna superposition of internal forces of the moored structure in operation for wind and wave loads can bernassumed. Numerical modeling validation is confirmed by tank tests. Data and video from the tank testsrnwill be shared as part of the presentation. GICON researchers plan to install a full-scale pilot plant in thernGerman Baltic Sea in 2016.
机译:深水中的海上风能资源以及传统基础的当前遇到的问题,正在推动对新型海上风电平台的解决方案要求。德国海上风电场的最新监测结果显示了该行业面临的挑战。生态影响以及基础技术问题正迫使该行业寻找替代方案。该演讲将介绍具有特定系泊缆线配置的浮动TLP结构技术,作为适用于水深大于30米的海上风机的创新基础概念。 GICON TLP的独特之处在于其模块化的框架结构,使浮力和载荷传递功能相互分离,而是应用于特定的结构元件。与经典的TLP设计和半潜式漂浮物相比,这种额外的支撑所带来的额外的稳定作用使整个系统的运动减至最少。由于TLP标准的稳定性能,因此市场上当前可用的海上涡轮机应可用于该平台。此外,还将描述模型盆地试验的结果。此外,还将介绍2013年夏季通过荷兰海事研究所(MARIN)的大型水箱实验与海上涡轮的arnscale模型获得的计算数据和实验数据的比较。这些实验包括风和波浪载荷,这些载荷代表了完整原型的拟议位置的不同海况。在数值模拟中,还考虑了系泊缆系统和海底各种锚固系统的不同几何构型,并考虑了在流体动力和空气动力联动作用下rnTLP的动态行为。使用特征性的坎贝尔图,针对TLP结构的软硬设计,优化了每个组件的结构刚度。 MARIN的规模试验结果已经证实,在风和波浪载荷作用下,系泊结构的内力可能会叠加。数值模拟验证已通过储罐测试确认。储罐测试中的数据和视频将作为演示的一部分共享。 GICON研究人员计划在2016年在德国波罗的海安装一个全面的中试工厂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号