首页> 外文会议>Offshore Technology Conference >3D Geomechanics Study for Basement Characterization and Sweet Spots Identification in Western Offshore, India
【24h】

3D Geomechanics Study for Basement Characterization and Sweet Spots Identification in Western Offshore, India

机译:西海海滨地下室表征的地质力学研究和甜点鉴定

获取原文
获取外文期刊封面目录资料

摘要

With known basement hydrocarbon accumulation, Mumbai High field in Western Offshore, India is a priority area for extending the concept of geo-mechanical fracture characterization in metamorphic basement reservoirs. Basement in Mumbai High is hydrocarbon bearing in areas proximal to major fault zones and intersections of major regional tectonic cross trends. Basement reservoirs have always been a challenge considering the lateral variation in rock properties with varying stress profile. The field under study has few wells producing hydrocarbon from varying depth intervals within Basement. Considering lower ROP, higher drilling cost and varying stress azimuth, a study has been conducted covering 3D Geomechanical numerical simulation and discrete fracture network stability analysis to identify sweetspots for new well locations targeting basement reservoirs while history matching field observations in offset wells. Basement reservoirs are often characterized by fracture sets which are conduit at present stress regime in far field condition. Some fracture sets are aligned within 20deg-30deg to maximum horizontal stress azimuth with few to be 90deg away from the maximum horizontal stress azimuth. To capture variation of fracture stability at field level, an analysis has been conducted at each offset well location, where geophysical logs, drilling parameters and geological information are integrated to construct a Mechanical Earth Model (Plumb et.al, 2000). Rock mechanical properties are calibrated with available core test results. Horizontal stress profile has been estimated based on poro-elastic horizontal strain method and advanced far field shear radial profiles. Validation of ID Mechanical Earth Models (MEMs) is conducted through predicted failure analysis and critical stressed fracture identification against drilling, production logging and testing results. A 3D MEM is constructed incorporating structural model, seismic velocity and ID MEM based rock mechanical properties. The 3D principal stress field from the geomechanical simulation has been redistributed over fracture planes of Discrete Fracture Network (DFN) model to identify critically stressed fractures using a slip criterion. It involves estimation of parameters like slip tolerance and critically pore pressure change to understand the proneness of fracture/fault planes to shear dilation (Barton et.al 1995). Stress regime varies from normal fault to strike slip fault depending on geological settings with maximum horizontal stress orientation varying between NNE-SSW to NE-SW. Analysis resulted in preparation of pseudo 3D sweet- spot maps governed by slip tolerance parameter indicating openness of fractures. It suggests that, most of the high angled fractures located in the proximity of intersection of faults are critically stressed subject to orientation reference to maximum horizontal stress direction and calculated slip tolerance. There is no specific azimuth of such fractures. Critical stressed fractures are present at varying depth: 50m to 250m from Basement top in the field as seen in offset wells where production logging and temperature data show good match of Hydrocarbon flow with predicted high slip tolerance fracture set locations. New locations with proposed well deviations and azimuths have been identified targeting the most probable prolific producers. The discussed multidisciplinary approach of fracture analysis has also been successfully used to predict and validate the contributing intervals in basement reservoirs of Mumbai High.
机译:凭借已知的地下室碳氢化合物积累,印度西海岸的孟买高场是延长变质地下储层地球机械骨折特性概念的优先领域。孟买的地下室是碳氢化合物轴承,位于近端的主要断层区和主要区域构造交叉趋势的交叉口。考虑到具有不同应力型材的岩石性能的横向变化,地下室储存器一直是挑战。正在研究的该领域几乎没有井在地下室内产生烃的碳氢化合物。考虑到较低的ROP,较高的钻井成本和变化的应力方位角,已经进行了一项研究,涵盖了3D地质力学数值模拟和离散断裂网络稳定性分析,以确定瞄准地下室储层的新井位置的甜点,而历史匹配偏移井的现场观察。地下室储存器通常是骨折组的特征,即在远场条件下在目前的应力制度处导管。一些裂缝组在20deg-30deg内对准到最大水平应力方位角,少量距离最大水平应力方位角。为了捕获现场水平的断裂稳定性的变化,在每个偏移阱位置进行了分析,其中地球物理日志,钻探参数和地质信息集成到构建机械地球模型(Plumb et.al,2000)。岩石机械性能校准,可用核心测试结果。基于孔弹性水平应变法和高级远场剪切径向剖面估计水平应力曲线。 ID机械地球模型(MEMS)的验证是通过预测的故障分析和针对钻井,生产测井和测试结果的关键压力裂缝识别进行的。 3D MEM由结构模型,地震速度和ID基基岩石机械性能构成。从地质力学模拟中的3D主应力场已经重新分布在离散断裂网络(DFN)模型的断裂面上,以使用滑动标准识别批判性压力的骨折。它涉及估计像滑动耐受性和重症孔隙压力变化的参数,以了解骨折/故障平面对剪切扩张的倾向(Barton et.Al 1995)。压力制度从正常故障变化,取决于具有最大水平应力方向的地质设置,在NNE-SSW到NE-SW之间变化。分析导致制备伪3D甜点地图,由滑动公差参数指示裂缝开放性。它表明,位于断层的交叉点附近的大多数高角度裂缝是受到最大水平应力方向和计算的滑动容差的定向参考。这种骨折没有特定的方位角。临界压力骨折处于不同深度:在偏移井中的地下室顶部50米至250m,如偏移井所示,其中生产测井和温度数据显示出碳氢化合物流量的良好匹配,具有预测的高滑动公差骨折设定位置。已经确定了具有所提出的井偏差和方位角的新位置,旨在瞄准最可能的多产的生产者。讨论的裂缝分析的多学科方法也已成功地用于预测和验证孟买地下室储层中的贡献间隔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号