首页> 外文会议>ASME conference on smart materials, adaptive structures and intelligent systems >GYROSCOPIC EFFECTS OF HORIZONTAL AXIS WIND TURBINES USING STOCHASTIC AEROELASTICITY VIA SPINNING FINITE ELEMENTS
【24h】

GYROSCOPIC EFFECTS OF HORIZONTAL AXIS WIND TURBINES USING STOCHASTIC AEROELASTICITY VIA SPINNING FINITE ELEMENTS

机译:水平轴风风力涡轮机的陀螺仪通过旋转有限元纺纱空气弹性的影响

获取原文

摘要

Horizontal axis wind turbine (HAWTs) structures, throughout the years, have presumed to be of relatively simple construction, but wind-induced aerodynamic vibrations, wind-field conditions, and power requirements tend to lead to the need for increasingly complicated designs. One phenomenon that requires special attention is the gyroscopic or Coriolis effect. In general, blades design codes are written to optimize for lightness and slenderness, but also to withstand excitations at high frequency. As a result, gyroscopic motion derives as a nonlinear dynamic condition in the out-of-plane direction that is difficult to characterize by means of the well-known vibrational theory that has been established for their design and analysis. The present study develops and presents a probabilistic analysis of the precession - gyroscopic - effects of a wind turbine model developed for tapered-swept cross-sections of n, degree with nonlinear variations of mass and geometry along the body of the blade. A dynamic orthogonal decoupling method is utilized to successfully perform the aero-elastic analysis by decoupling the damped-gyroscopic equations of motion, as a result of the addition of Rayleigh damping - symmetric proportional mass and stiffness - within the linear system in study. Results are valid for yaw-free rotor configurations by means of unknown and random (though bounded) yaw rates. Simultaneously, those results can easily be expanded for yaw-controlled mechanisms. The yaw-free assumption presents a higher risk of potential reliability expectations, given the stochastic impairment of the gyroscopic nature that is present for out-of-plane axis motions, requiring special attention at higher frequencies. This impairment becomes particularly troublesome for blade profiles with tapered-swept cross-section variations. This uncertainty can be minimized by incorporating a mathematical framework capable of characterizing properly the yaw action such that gyroscopic effects can be fully interpreted and diagnosed. In summary, the main goal is to decipher the complexity of gyroscopic patterns of flexible rotor blades with complex shape configurations, but also to provide substantial elements to successfully approach yaw-mechanics of tapered-swept rotor blades.
机译:水平轴风力涡轮机(的HAWT)结构,这些年来,已经假定是相对简单的结构,但风致气动振动,风场条件,和功率需求往往导致需要对日益复杂的设计。需要特别注意的一个现象是陀螺或科里奥利效应。一般地,叶片设计代码写入来优化亮度和长细,而且还能够承受在高频激励。其结果是,回转运动导出作为外的平面中的方向是难以通过已经建立了他们的设计和分析的公知的振动理论的手段来表征非线性动态条件。本研究中开发并提出了进动的概率分析 - 陀螺 - 对于n,沿叶片的身体质量和几何形状的变化的非线性度的锥形掠截面开发的风力涡轮机模型的作用。利用动态正交解耦方法成功地通过解耦运动的阻尼-陀螺方程执行气动弹性分析,作为相加瑞利的阻尼的结果 - 在研究中的线性系统内 - 对称比例质量和刚度。结果是有效的用于通过未知和随机(尽管有界)偏航率的手段自由偏航转子配置。同时,这些结果可以很容易地进行偏航控制机制扩大。自由偏航假设礼物的潜在可靠性的要求更高的风险,给出的陀螺本质是存在于外的平面轴运动,需要特别关注在高频下的随机损伤。这种损害成为具有锥形掠横截面变化叶片轮廓特别麻烦。这种不确定性可以通过将能够表征正确偏航动作,使得陀螺效应可以充分解释和诊断的数学框架最小化。总之,主要的目标是破译的挠性转子叶片具有复杂的形状结构陀螺仪图案的复杂性,而且还向锥形掠转子叶片的成功方法偏航力学提供大量元件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号