首页> 外文会议>American Control Conference >Process Control Applications of Subspace and Regression-based Identification and Monitoring Methods
【24h】

Process Control Applications of Subspace and Regression-based Identification and Monitoring Methods

机译:基于子空间的过程控制应用和基于回归的识别和监测方法

获取原文

摘要

This tutorial paper summarizes the application of a variety of identification techniques to simulations of two realistic chemical processes, a continuous stirred-tank reactor (CSTR) and the Tennessee Eastman challenge process. Both subspace identification methods (N4SID and CVA) and regression techniques (PLS and CCR) are considered. Emphasis is placed on the relative performance of the various identification methods, and their strengths and weaknesses. Also, the use of these identification methods in monitoring and fault detection is discussed. In the CSTR case study, Dynamic ARX and FIR models are identified using two regression techniques, PLS and CCR, and the predictive error method. are compared with state-space models identified using two subspace algorithms, CVA and N4SID. The objective functions for PLS and CCR are shown to be related. A comprehensive simulation study of the CSTR with different characteristics and noise properties is used to compare the identification methods. The results indicate that, if the time delay structure is known or estimated accurately, the identified subspace models tend to be more accurate than the models identified using regression. The state-space models identified using the CVA algorithm are especially accurate. The Tennessee Eastman challenge process is a realistic simulation of a chemical process that has been widely used in process control studies. In this case study, several identification methods are examined and used to develop MIMO models that contain seven inputs and ten outputs. ARX and finite impulse response models are identified using reduced-rank regression techniques (PLS and CCR) and state-space models identified with prediction error methods and subspace algorithms. For a variety of reasons, the only successful models are the state-space models produced by two popular subspace algorithms, N4SID and canonical variate analysis (CVA). The CVA model is the most accurate. Important issues for identifying the Tennessee Eastman challenge process and comparisons between the subspace algorithms are also discussed.
机译:本教程纸总结了各种识别技术的应用,模拟了两个现实化学工艺,连续搅拌罐反应器(CSTR)和田纳西州伊斯曼挑战过程。考虑子空间识别方法(N4SID和CVA)和回归技术(PLS和CCR)。重点是各种识别方法的相对性能及其优点和缺点。此外,讨论了在监测和故障检测中使用这些识别方法。在CSTR案例研究中,使用两种回归技术,PLS和CCR和预测误差方法识别动态ARX和FIL模型。与使用两个子空间算法,CVA和N4SID识别的状态空间模型进行比较。 PLS和CCR的目标功能显示有关。具有不同特性和噪声性能的CSTR的综合模拟研究用于比较识别方法。结果表明,如果时间延迟结构是已知的或准确的,则所识别的子空间模型往往比使用回归识别的模型更准确。使用CVA算法识别的状态空间模型是特别准确的。田纳西州的伊斯达曼挑战过程是一种逼真的化学过程模拟,这些过程已被广泛用于过程控制研究。在这种情况下,检查几种识别方法并用于开发包含七个输入和十个输出的MIMO模型。使用减少秩的回归技术(PLS和CCR)和使用预测误差方法和子空间算法识别的状态空间模型来识别ARX和有限脉冲响应模型。由于各种原因,唯一成功的模型是由两个流行的子空间算法,N4SID和规范变化分析(CVA)产生的状态空间模型。 CVA模型是最准确的。还讨论了识别田纳西州的田纳西州伊斯坦斯挑战过程和子空间算法之间的比较的重要问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号