首页> 外文会议>Conference on nanophotonics and micro/nano optics >Si Micro- and Nano-structures for Communication and Energy Applications
【24h】

Si Micro- and Nano-structures for Communication and Energy Applications

机译:用于通信和能源应用的SI微型和纳米结构

获取原文

摘要

In the past decades, Si has been the most important material for electronics. By exploiting this mature semiconductor fabrication technique, it is also highly desired to use Si for applications in other areas. Here we report the use of Si micro-structures for optical-communications and Si nano-structures for energy applications. Sub-micron Si waveguides is fabricated on Si substrates rather than SOI (silicon on insulator) substrate using laser reformation technique. This method helps solve the incompatible problem for the integration of optics and electronics on a single Si chip. The typical thickness of the oxide layer on the CMOS transistor layer is below 100nm which, however, creates excessive optical loss due to the light coupling into Si substrate. Besides, fabricating Si photonics on Si wafer is much cheaper than that on SOI wafer. The method is using high-power pulse laser to melt high-aspect ratio Si ridges. This creates a structure with wider upper portion and narrower lower portion, which can be further oxidized and forming waveguides. For energy applications, Si nanostructures are fabricated using the metal-assisted chemical etching (MacEtch) technique. Si nanostructures could greatly reduce the surface reflection to enhance light harvest. In addition, Si nanowires are further combined with organic materials to form hetero-junction solar cells using low-cost solution process. Furthermore, the Si nanostructures and MacEtch process are refined to form completely single-crystal Si thin film. Thus the material cost of Si solar cells can be potentially reduced to only 1/10 of current ones.
机译:在过去的几十年中,SI一直是电子产品最重要的材料。通过利用这种成熟的半导体制造技术,也非常希望在其他区域使用SI进行SI。在这里,我们报告了使用SI微结构进行光通和Si纳米结构的能量应用。使用激光重整技术在Si基板上而不是SII基板(硅上的硅)基板上制造亚微米SI波导。该方法有助于解决单一SI芯片上光学和电子集成的不兼容问题。 CMOS晶体管层上的氧化物层的典型厚度低于100nm,然而,由于光耦合到Si衬底,产生过多的光学损失。此外,在Si晶片上制造Si光子学比SOI晶片上的尺寸便宜得多。该方法采用高功率脉冲激光熔化高纵横比Si脊。这产生具有更宽的上部和更窄的下部的结构,其可以进一步氧化和形成波导。对于能量应用,使用金属辅助化学蚀刻(MACETCH)技术制造Si纳米结构。 Si纳米结构可以大大降低表面反射以增强光收获。此外,Si纳米线还与有机材料相结合,使用低成本溶液方法形成杂连接太阳能电池。此外,精制Si纳米结构和丙灰化方法以形成完全单晶的Si薄膜。因此,Si太阳能电池的材料成本可以潜在地降低到电流的1/10。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号