首页> 外文会议>ASME summer heat transfer conference >A COMPREHENSIVE BEJAN'S HEATLINE APPROACH FOR NATURAL CONVECTION HEAT TRANSFER WITHIN INCLINED SQUARE CAVITIES
【24h】

A COMPREHENSIVE BEJAN'S HEATLINE APPROACH FOR NATURAL CONVECTION HEAT TRANSFER WITHIN INCLINED SQUARE CAVITIES

机译:正方形腔内自然对流传热的综合Bejan热线方法

获取原文

摘要

The present study deals with natural convection heat transfer within water (Pr = 7.2) filled inclined square cavities for hot bottom wall (case 1: isothermal heating/case 2: non-isothermal heating) and cold side walls in the presence of adiabatic top wall. The Galerkin finite element method has been used to solve the nonlinear coupled partial differential equations governing the fluid flow and thermal fields. This method is further used to solve the Poisson equation for streamfunction and heatfunc-tion. The streamlines (Ψ), isotherms (θ) and heatlines (TV) are obtained for various inclination angles (Φ = 0°, 30° and 60°) in the range of Rayleigh numbers (10~3 ≤ Ra ≤ 10~5). The physical significance of heatlines have been demonstrated for a comprehensive understanding of heat energy distribution within the inclined square cavities. The flow pattern is symmetric for Φ = 0° whereas asymmetric flow pattern is observed for the Φ - 30° and 60° due to tangential and normal components of buoyancy forces. At Ra = 10~3, weak fluid circulation and orthogonal heatlines on isothermal surface, indicate conduction dominant heat transfer for both cases. Strong closed loop heatlines are found due to strong fluid convective circulation cells at Ra = 105. Heat transfer rates are obtained in terms of local and average Nus-selt numbers. In general, the overall amount of heat transfer along the right wall increases with inclination angle and that decreases along the left wall with increase in inclination angle. The non-isothermal heating case exhibits greater heat transfer rates at the center of the bottom wall than the isothermal heating whereas average Nusselt number shows that overall heat transfer rate is larger for the isothermal heating case as compared to that of non-isothermal heating case.
机译:本研究研究了在绝热顶壁存在的情况下,在热的底壁(情况1:等温加热/情况2:非等温加热)和冷侧壁的水(Pr = 7.2)填充的倾斜方腔内的自然对流传热问题。 。 Galerkin有限元方法已用于求解控制流体流动和温度场的非线性耦合偏微分方程。该方法还用于求解流函数和热功能的泊松方程。在瑞利数(10〜3≤Ra≤10〜5)范围内的各种倾角(Φ= 0°,30°和60°)下获得流线(Ψ),等温线(θ)和热线(TV) 。为了全面了解倾斜方腔内的热能分布,已证明了热线的物理意义。对于Φ= 0°,流型是对称的,而对于Φ-30°和60°,由于浮力的切向分量和法向分量,会观察到不对称的流型。在Ra = 10〜3时,这两种情况下的弱流体循环和等温面上的正交热线都表明传导占主导地位的热传递。由于在Ra = 105处有强大的流体对流循环单元,因此发现了强大的闭环热线。传热速率是根据局部和平均Nus-selt数获得的。通常,沿着右壁的总传热量随倾斜角而增加,而沿着左壁的总热量随倾斜角的增加而减少。非等温加热箱在底壁中心处的传热速率比等温加热箱大,而平均努塞尔数表明,与非等温加热箱相比,等温加热箱的总传热速率更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号