首页> 外文会议>Collection Systems Conference >A River Runs Through It: Application of an Integrated Combined Sewer and Stream Channel Model to Support a Sustainable CSO Control Plan
【24h】

A River Runs Through It: Application of an Integrated Combined Sewer and Stream Channel Model to Support a Sustainable CSO Control Plan

机译:一条河流通过它:应用集成的组合下水道和流频道模型,以支持可持续的CSO控制计划

获取原文

摘要

Imagine if you will an interceptor within a combined sewer system (CSS) that runs underneath a channel. Now imagine the channel is concrete; constructed by the U.S. Corps of Engineers to mitigate flood damage in the 1930s. Finally, imagine the channel and interceptor connected through a series of grated inlets on the interceptor and combined sewer overflow (CSO) discharges into the channel. What you have imagined is a reality for the Metropolitan Sewer District of Greater Cincinnati (MSDGC). The West Fork Branch Interceptor conveys combined sewage from an approximately 25 km~2 (10 mi~2) watershed. The West Fork Branch (WFB) stream conveys stormwater from this watershed along with overflows from with 15 combined sewer overflows (CSOs). 10,000 LF of the WFB channel is rectangular concrete channel constructed by the Corps of Engineers in the 1930s to manage flooding through the 100-year event. Grate structures installed in the bottom of the concrete channel allow stream flow and combined sewage to pass between the channel and the interceptor. To support the implementation of sustainable CSO controls that have the overall objective of using source control techniques for reducing or removing stormwater inflow into the combined sewer system, MSDGC expanded the existing WFB model to integrate the concrete channel portion of the WFB with the interceptor. Using additional in-system flow monitoring data along with detailed channel cross-section geometry and stream rating curves at key locations in the WFB channel, the model was calibrated to predict both flows and grade lines within the interceptor and the complex interaction of the channel and the interceptor. Because MSDGC was well along in the implementation of many green infrastructure and other sustainable projects to address many of the 15 CSOs within the WFB watershed, the calibrated model was updated to reflect the implementation of these projects. Using this fully calibrated and integrated tool, MSDGC conducted a rigorous evaluation to understand the complex interaction of the channel and the interceptor, evaluate the impact of the proposed sustainable projects on the WFB channel and interceptor hydraulics, and ultimately help size a new interceptor to convey flows without any connection to the WFB channel. In addition, the integrated model was used to help size and evaluate returning the concrete portion of the WFB channel to a natural stream channel. The model helped assess the potential impacts on downstream flooding, appropriately size the stream channel, and determine the appropriate interceptor size to provide the targeted CSO reductions required in MSDGC’s consent decree. The resulting plan included: 1 6,000 linear feet of 48-inch interceptor, and 2 Combined total of over 2 million gallons of CSO storage. 3 Restoration 6,000 linear feet of the WFB stream channel, 4 Additional stormwater detention adjacent to the West Fork, 5 “Express” storm sewers at three CSOs, and 6 Storm sewer separation, stormwater detention, and stream restoration at CSO 130 This project provided MSDGC with a balanced plan for CSO control that also provided significant environmental benefits by returning the channel to a more natural state and provided a significant public amenity for the adjacent communities. The integrated approach of upstream sustainable projects, cost-effective gray solutions, and significant stream restoration supported MSDGC’s “triple-bottom line” approach to implementing its wet weather improvement plan. This paper will provide other communities with a unique approach for evaluating complex stream and sewer interactions and lessons learned for effectively implementing green technologies to meet CSO control objectives.
机译:想象一下,如果您将在频道下运行的组合下水道系统(CSS)中的拦截器。现在想象频道是混凝土;由美国军团的工程师构建,以减轻20世纪30年代的洪水损坏。最后,想象通过拦截器上的一系列磨碎的入口连接的频道和拦截器,并将下水道溢出(CSO)放电到通道中。您想象的是大慈茵河大都市下水道区(MSDGC)的现实。西叉分支拦截器将污水与大约25公里〜2(10英里〜2)流域传达。西叉分支(WFB)溪流将雨水从这个流域传达,而溢出来自15个组合的下水道溢出(CSO)。 10,000卢比的WFB通道是由20世纪30年代工程师建造的矩形混凝土通道,通过100年的活动管理洪水。安装在混凝土通道底部的格栅结构允许流流程和组合污水在通道和拦截器之间通过。为了支持实施具有使用源控制技术的整体目标的可持续CSO控制,用于将雨水流入的云水流入组合到组合的下水道系统,MSDGC扩展了现有的WFB模型,将WFB的混凝土通道部分与拦截器集成在一起。在WFB通道中的关键位置使用额外的系统流量监控数据以及详细的通道横截面几何和流额定值曲线,模型被校准以预测拦截器内的流量和等级线和通道的复杂交互。拦截器。由于MSDGC在执行许多绿色基础设施和其他可持续项目的实施中,以满足WFB流域内的许多CSO中的许多CSO,因此更新了校准模式,以反映这些项目的实施。使用这种完全校准和集成的工具,MSDGC对渠道和拦截器的复杂互动进行了严格的评估,评估所提出的可持续项目对WFB通道和拦截液压的影响,最终有助于尺寸传达新的拦截器流过任何与WFB通道的连接。另外,集成模型用于帮助尺寸和评估将WFB通道的混凝土部分返回到自然流通道。该模型有助于评估对下游洪水,适当尺寸的流通道的潜在影响,并确定适当的拦截尺寸,以提供MSDGC同意法令所需的目标CSO减少。所产生的计划包括:1 6,000线性脚48英寸拦截器,2个超过200万加仑的CSO储存组合。 3恢复6,000个WFB流通道的线性脚,4个CSO的额外雨水拘留,额外的雨水拘留,三个CSO的5“快速”风暴下水道,6个风暴下水道分离,雨水拘留和在CSO 130的Storm Restoration提供了MSDGC对于CSO控制的平衡计划,还通过将渠道返回更自然的国家来提供重大的环境效益,并为邻近社区提供了大量的公众舒适度。上游可持续项目的综合方法,具有成本效益的灰色解决方案,以及重大的流恢复支持MSDGC的“三底线”方法来实现其潮湿的天气改善计划。本文将提供其他社区,具有独特的方法,用于评估复杂的流和下水道的相互作用以及用于有效实施绿色技术以满足CSO控制目标的课程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号