首页> 外文会议>ASME summer bioengineering conference;SBC2012 >ADHESIVE SIGNATURE-BASED, LABEL-FREE ISOLATION OF HUMAN PLURIPOTENT STEM CELLS
【24h】

ADHESIVE SIGNATURE-BASED, LABEL-FREE ISOLATION OF HUMAN PLURIPOTENT STEM CELLS

机译:基于胶粘剂的人多能干细胞无标签分离

获取原文

摘要

Generation of human induced pluripotent stem cells (hiPSCs) from fibroblasts and other somatic cells represents a highly promising strategy to produce auto- and allo-genic cell sources for therapeutic approaches as well as novel models of human development and disease1. Reprogramming protocols involve transduction of the Yamanaka factors Oct3/4, Sox2, Klf4, and c-Myc into the parental somatic cells, followed by culturing the transduced cells on mouse embryonic fibroblast (MEF) or human fibroblast feeder layers, and subsequent mechanical dissociation of pluripotent cell-like colonies for propagation on feeder layers. The presence of residual parental and feeder-layer cells introduces experimental variability, pathogenic contamination, and promotes immunogenicity. Similar to human embryonic stem cells (hESCs), reprogrammed hiPSCs suffer from the unavoidable problem of spontaneous differentiation due to sub-optimal feeder cultures4, growth factors5, and the feeder-free substrate. Spontaneously differentiated (SD)-hiPSCs display reduced pluripotency and often contaminate hiPSC cultures, resulting in overgrowth of cultures and compromising the quality of residual pluripotent stem cells5. Therefore, the ability to rapidly and efficiently isolate undifferentiated hiPSCs from the parental somatic cells, feeder-layer cells, and spontaneously differentiated cells is a crucial step that remains a bottleneck in all human pluripotent stem cell research.
机译:由成纤维细胞和其他体细胞生成人诱导的多能干细胞(hiPSC)代表了一种极有前途的策略,可产生用于治疗方法以及人类发育和疾病的新型模型的自体和异源细胞来源。重编程方案包括将Yamanaka因子Oct3 / 4,Sox2,Klf4和c-Myc转导到亲代体细胞中,然后在小鼠胚胎成纤维细胞(MEF)或人成纤维细胞饲养层上培养转导的细胞,并随后机械解离多能细胞样菌落,可在饲养层上繁殖。残留的亲代和饲养层细胞的存在会引入实验变异性,致病性污染并促进免疫原性。与人类胚胎干细胞(hESCs)相似,由于次优饲养细胞培养物4,生长因子5和无饲养细胞的底物,重编程的hiPSC遭受了不可避免的自发分化问题。自发分化(SD)-hiPSC表现出多能性降低,并且经常污染hiPSC培养物,导致培养物过度生长并损害残留的多能干细胞的质量5。因此,从父母的体细胞,饲养层细胞和自发分化的细胞中快速有效地分离未分化的hiPSC的能力是至关重要的一步,仍然是所有人类多能干细胞研究的瓶颈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号