首页> 外文会议>ASME turbo expo >DEVELOPMENT OF AN OPTIMIZATION DESIGN METHOD FOR TURBOMACHINERY BY INCORPORATING THE COOPERATIVE COEVOLUTION GENETIC ALGORITHM AND ADAPTIVE APPROXIMATE MODEL
【24h】

DEVELOPMENT OF AN OPTIMIZATION DESIGN METHOD FOR TURBOMACHINERY BY INCORPORATING THE COOPERATIVE COEVOLUTION GENETIC ALGORITHM AND ADAPTIVE APPROXIMATE MODEL

机译:协同合作进化遗传算法与自适应近似模型的轮机优化设计方法的研制。

获取原文

摘要

An optimization design method is developed, which is motivated by the optimal design of a cryogenic liquid turbine (including an asymmetric volute, variable stager vane nozzles, shroud impeller and diffuser) for replacement of the Joule-Thompson throttling valve in the internal compression air-separation unit. The method involves mainly three elements: geometric parameterization, prediction of objective function, and mathematical optimization algorithm. Traditional parameterization approach is used for the geometry representation, while some novel work in the latter two aspects (i.e. objective function evaluation and optimization algorithm) is done to reduce the computing time and improve the optimization solution. A modified Cooperative Coevolution Genetic Algorithms (CCGA) is developed by incorporating a modified variable classification algorithm and some new self-adapted GA operators, which help to enhance the global search ability with an excessive number of optimization variables. Design of Experiment (DOE) is carried out to initialize the kriging approximation model, which is used to approximate the time-costly objective function. Then the CCGA is started, and once a potential superior individual is found, a decision will be made by the in-house code on whether or not it needs a updating. If required, the true objective function prediction based on the real model will be conducted and the obtained value of objective function will be used to update the kriging model. In such a way, the CCGA can complete its optimal searching with a limited number of real evaluations for objective function. All the above features are integrated into the optimization framework and encoded for the optimal turbine design. In addition, CFD software ANSYS CFX is used for the real objective function evaluations, and a well-organized batch code is developed by the authors for calling the CFD simulation which helps to promote this automation of the optimization process. For validation, the optimization method is used to solve some classical mathematical optimization problems and its effectiveness is demonstrated. The method is then used in the optimal design of the cryogenic liquid turbine stage, it is demonstrated that the optimal design method can help to reduce significantly the searching time for the optimal design and improve the design solution to the liquid turbine.
机译:开发了一种优化设计方法,该方法是由低温液体涡轮机(包括不对称蜗壳,可变级叶片叶片,护罩叶轮和扩散器)的最佳设计所驱动,以替代内部压缩空气中的焦耳-汤普森节流阀。分离单元。该方法主要涉及三个要素:几何参数化,目标函数预测和数学优化算法。传统的参数化方法用于几何表示,同时在后两个方面做了一些新颖的工作(即目标函数评估和优化算法)以减少计算时间并改进优化解决方案。通过结合改进的变量分类算法和一些新的自适应遗传算子,开发了改进的协同协同进化遗传算法(CCGA),这有助于通过过多的优化变量来增强全局搜索能力。进行实验设计(DOE)以初始化克里金近似模型,该模型用于近似耗时的目标函数。然后启动CCGA,一旦找到潜在的上级个人,内部代码将决定是否需要更新。如果需要,将进行基于真实模型的真实目标函数预测,并将获得的目标函数值用于更新克里金模型。这样,CCGA可以使用有限数量的针对目标函数的实际评估来完成其最佳搜索。以上所有功能均集成到优化框架中,并进行了编码,以实现最佳涡轮设计。此外,CFD软件ANSYS CFX用于实际目标函数评估,作者开发了组织良好的批处理代码来调用CFD仿真,这有助于促进优化过程的这种自动化。为了验证,该优化方法用于解决一些经典的数学优化问题,并证明了其有效性。然后将该方法用于低温液体透平级的优化设计,证明了该优化设计方法可以大大减少优化设计的搜索时间,改善液体透平的设计方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号