首页> 外文会议>ASME international mechanical engineering congress and exposition;IMECE2011 >PREDICTION OF BOILING AND CRITICAL HEAT FLUX USING AN EULERIAN MULTIPHASE BOILING MODEL
【24h】

PREDICTION OF BOILING AND CRITICAL HEAT FLUX USING AN EULERIAN MULTIPHASE BOILING MODEL

机译:使用EULERIAN多相沸腾模型预测沸腾和临界热通量

获取原文

摘要

The present paper concerns the development and validation of an Eulerian multiphase boiling model to predict boiling and critical heat flux within the general-purpose computational fluid dynamics (CFD) solver FLUENT. The governing equations solved are generalized phase continuity, momentum and energy equations. Turbulence effects are accounted for using mixture, dispersed or per-phase multiphase turbulence models. Wall boiling phenomena are modeled using the baseline mechanistic nucleate boiling model, developed in Rensselaer Polytechnic Institute (RPI). Modifications have been introduced to the quenching heat flux model to achieve mesh-independent solutions. The influences of boiling model parameters have also been systematically investigated. To model non-equilibrium boiling and critical heat flux, the PRI model is extended to the departure from nucleate boiling (DNB) by partitioning wall heat flux to both liquid and vapor phases and considering the existence of thin liquid wall film. Topological functions are introduced to consider the wall boiling regime transition from the nucleate boiling to critical heat flux (CHF), and the corresponding flow regime change from bubbly flows to mist flows. A range of sub-models are implemented to model the interfacial momentum, mass and heat transfer and turbulence-bubble interactions. To validate the Eulerian multiphase boiling model, it has been used to predict nucleating boiling and critical heat flux in a range of 2D and 3D boiling flows. The examples presented in the paper include: (1). Nucleate boiling of sub-cooled water in an upward heated pipe; (2) R113 liquid flows through a vertical annulus with internal heated walls; (3). 3D boiling flows in a rectangular-sectioned duct; and (4). Critical heat flux and post dryout in vertical pipes. The results demonstrate that the model is able to predict reasonably well the distributions of wall temperature, the bulk fluid sub-cooling temperature and cross-sectional averaged vapor volume fraction in the vertical pipe. The computed profiles of the vapor volume fraction, liquid temperature, and the liquid and vapor velocity profiles are generally in good agreement with available experiments in the 2D annular case. In the 3D rectangular duct, the cross-sectional averaged vapor volume fractions are well captured in all the ten cases under investigation. In the case of critical heat flux and post dryout, the model is also able to predict reasonably well the location and the temperature rise under critical heat flux conditions. The computed wall temperature distributions along the pipes are in overall good agreement with available experiments.
机译:本文涉及欧拉多相沸腾模型的开发和验证,以预测通用计算流体动力学(CFD)求解器流畅的沸腾和临界热通量。解决的控制方程是广义相连续性,动量和能量方程。涉及使用混合物,分散或每相多相多相湍流模型的湍流效应。壁沸腾现象采用基线机械核心沸腾模型进行了建模,在Rensselaer Polytechnic Institute(RPI)中开发。已经引入了淬火热通量模型的修改,以实现与网格无关的解决方案。还系统地研究了沸腾模型参数的影响。为了模拟非平衡沸腾和临界热通量,PRI模型通过将壁热通量分配给液体和蒸汽阶段并考虑存在薄液体膜的存在而延伸到核心沸腾(DNB)。介绍拓扑功能以考虑从核心沸腾到临界热通量(CHF)的壁沸腾方案过渡,并且相应的流动状态从泡沫流变为雾气流。实施了一系列子模型以模拟界面动量,质量和传热和湍流 - 气泡相互作用。为了验证Eulerian多相沸腾模型,已用于预测在2D和3D沸腾流程范围内的核心沸腾和临界热通量。本文提出的实施例包括:(1)。向上加热管中的亚冷水的核心沸腾; (2)R113液体流过具有内部加热壁的垂直环; (3)。 3D沸腾的流动在一个矩形切片的管道中; (4)。临界热通量和垂直管道的后置柱。结果表明,该模型能够预测垂直管中的壁温度,散装流体子冷却温度和横截面平均蒸汽体积分数的合理良好地预测。蒸汽体积分数,液体温度和液体和蒸汽速度谱的计算轮廓通常与2D环形盒中的可用实验良好。在3D矩形管道中,在调查的所有十个病例中,横截面平均蒸气体积分数很好地捕获。在临界热通量和干扰后的情况下,该模型也能够在临界热通量条件下的位置和温度升高。沿管道的计算壁温分布与可用实验完全良好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号