首页> 外文会议>ASME international mechanical engineering congress and exposition;IMECE2011 >Heat Conduction in High Thermal Conductivity Networked Composite Films for Thermal Interface Materials
【24h】

Heat Conduction in High Thermal Conductivity Networked Composite Films for Thermal Interface Materials

机译:用于热界面材料的高导热网络复合膜中的导热

获取原文

摘要

Fast and efficient exchange of thermal energy plays a vital role in the thermal management of electronic and optoelectronic devices. A critical component for thermal management is a thermal interface material (TIM) that is used to minimize the contact thermal resistance between surfaces and to provide a low resistance pathway to spread and remove heat. Ideal TIMs must pass several key requirements: 1) high thermal conductivity κ and low thermal contact resistance with the mating surfaces; 2) easy to apply with controlled thickness; 3) low temperature processing; 4) able to accommodate thermally induced mechanical stresses during on-off cycling of the device. Particle-based composites have reasonable slurry viscosities, however their thermal conductivity are usually very low (<10 Wm~(-1)K~(-1)), even when high k nanofillers are employed, due to the thermal interface resistance between nanoparticles and the polymer matrix or the absence of high κ pathways. We recently demonstrated high k in bulk nanocomposites of silver nanoparticles dispersed in epoxy and cured at low temperature (150°C). A nanocomposite with 30 vol. % 20nm particles exhibited k ~30 WiTf ~(-1)K~(-13). The mechanism responsible for enhancing κ was found to be the self-construction, through in-situ sintering, of high aspect ratio metallic networks inside the nanocomposite. Therefore these materials are named high thermal conductivity networked (HTCNet) composites. The objective of this work is to explore the thermal conductance of films of HTCNet composites for possible applications as Networked TIMs (Net-TlMs) and to understand if the high thermal conductivity observed in bulk samples can be extended to confined systems.
机译:快速有效地交换热能在电子和光电设备的热管理中起着至关重要的作用。热管理的关键组件是热界面材料(TIM),用于最小化表面之间的接触热阻并提供低电阻路径来散布和散发热量。理想的TIM必须通过几个关键要求:1)高导热系数κ和与配合表面的低热接触电阻; 2)易于控制厚度3)低温处理; 4)能够适应设备开-关循环期间的热机械应力。基于颗粒的复合材料具有合理的浆液粘度,但是由于纳米颗粒之间的热界面电阻,即使使用高k纳米填料,它们的导热系数通常也非常低(<10 Wm〜(-1)K〜(-1))。以及聚合物基质或不存在高κ途径。我们最近展示了散布在环氧树脂中并在低温(150°C)下固化的银纳米颗粒的块状纳米复合材料中的高k值。 30vol。%的纳米复合材料。 20nm的颗粒%显示出k〜30 WiTf〜(-1)K〜(-13)。发现负责增强κ的机理是通过原位烧结纳米复合材料内部高纵横比的金属网络的自构。因此,这些材料被称为高导热网络(HTCNet)复合材料。这项工作的目的是探索HTCNet复合材料薄膜的热导率,以用于网络化TIM(Net-TlMs),并了解是否可以将散装样品中观察到的高导热率扩展到密闭系统中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号