首页> 外文会议>ASME Pacific Rim technical conference and exhibition on packaging and integration of electronic and photonic systems, MEMS and NEMS;IPACK2011 >PREDICTION OF TRANSIENT THERMAL BEHAVIOR OF PLANAR INTERCONNECT ARCHITECTURE USING PROPER ORTHOGONAL DECOMPOSITION METHOD
【24h】

PREDICTION OF TRANSIENT THERMAL BEHAVIOR OF PLANAR INTERCONNECT ARCHITECTURE USING PROPER ORTHOGONAL DECOMPOSITION METHOD

机译:运用正交正交分解法预测平面互连结构的瞬态热行为

获取原文

摘要

A major challenge in maintaining quality and reliability in today's microelectronics devices comes from the ever increasing level of integration in the device fabrication as well as the high level of current densities that are carried through the microchip during operation. Cyclic thermal events during operation, stemming from Joule heating of the metal lines, can lead to fatigue failure due to the varying thermal expansion coefficients of the different materials that compose the microchip package. To aid in the avoidance of such device failures, it is imperative to develop a predictive capability for the thermal response of micro-electronic circuits. This work studied the problem of transient Joule heating in interconnects in a two-dimensional (2D) inhomogeneous system using a reduced order modeling approach of the Proper Orthogonal Decomposition (POD) method and Galerkin Projection Technique. This study considers an interconnect structure embedded in the bulk of a microelectronic device. The effect of different types of current pulses, pulse duration, and pulse amplitude were investigated. By using a representative step function as the heat source, the model predicted the exact transient thermal behavior of the system for all other cases without generating any new observations, using just a few POD modes. To validate this unique capability, the result of the POD model was compared with a finite element (FE) model developed in LS-DYNA®. The behaviors of the POD models were in good agreements with the corresponding FE models. This close correlation provides the capability of predicting other cases based on a smaller sample set which can significantly decrease the computational cost.
机译:在当今的微电子设备中,保持质量和可靠性的主要挑战来自于设备制造中集成度的不断提高,以及在操作过程中微芯片所承载的高电流密度。由于金属线的焦耳热,操作期间的循环热事件会导致疲劳失效,这是由于构成微芯片封装的不同材料的热膨胀系数不同而引起的。为了帮助避免此类设备故障,必须开发微电子电路的热响应预测能力。这项工作使用固有正交分解(POD)方法和Galerkin投影技术的降阶建模方法,研究了二维(2D)不均匀系统中互连中的瞬态焦耳热问题。这项研究考虑了嵌入在微电子设备主体中的互连结构。研究了不同类型的电流脉冲,脉冲持续时间和脉冲幅度的影响。通过使用代表性的阶跃函数作为热源,该模型仅使用几种POD模式即可预测所有其他情况下系统的准确瞬态热行为,而不会产生任何新的观测值。为了验证这种独特的功能,将POD模型的结果与LS-DYNA®中开发的有限元(FE)模型进行了比较。 POD模型的行为与相应的FE模型具有良好的一致性。这种紧密的相关性提供了基于较小样本集预测其他情况的能力,这可以显着降低计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号