首页> 外文会议>2010 DoD High Performance Computing Modernization Program Users Group Conference >Efficiently Generalizing Ultra-Cold Atomic Simulations via Inhomogeneous Dynamical Mean-Field Theory from Two- to Three-Dimensions
【24h】

Efficiently Generalizing Ultra-Cold Atomic Simulations via Inhomogeneous Dynamical Mean-Field Theory from Two- to Three-Dimensions

机译:通过二维不均匀动力学平均场理论有效地推广超冷原子模拟

获取原文

摘要

We describe techniques that we are implementing to move inhomogeneous dynamical mean-field theory simulations from two-to three-dimensions. Two-dimensional simulations typically run on 2,000 -- 10,000 lattice sites, while three-dimensional simulations typically need to run on 1,000,000 or more lattice sites. The inhomogeneous dynamical mean-field theory requires the diagonal of the inverse of many sparse matrices with the same sparsity pattern, and a dimension equal to the number of lattice-sites. For two-dimensional systems, we have employed general dense LAPACK routines since the matrices are small enough. For three-dimensional systems, we need to employ sparse matrix techniques. Here, we present one possible strategy for the sparse matrix routine, based on the well-known Lanczos technique, with a long run of the algorithm and (partial) reorthogonalization. This approach is about two-times faster than the LAPACK routines with identical accuracy, and hence will become the standard we use on the two-dimensional problems. We illustrate this approach on the problem of increasing the efficiency for pre-forming dipolar molecules in K-Rb mixtures on a lattice. We compare the local density approximation to inhomogeneous dynamical mean-field theory to illustrate how the local density approximation fails at low-temperature, and to illustrate the benefits of the new algorithms. For a three-dimensional problem, a speed-up of 1,000 or more times is needed. We end by discussing some options that are promising toward reaching this goal.
机译:我们描述了我们正在实施的将非均质动力平均场理论模拟从二维移动到三维的技术。二维模拟通常在2,000-10,000个晶格位点上运行,而三维模拟通常需要在1,000,000或更多个晶格位点上运行。非均质动力平均场理论要求具有稀疏模式且维数等于格点数量的许多稀疏矩阵的逆矩阵的对角线。对于二维系统,由于矩阵足够小,因此我们采用了一般的密集LAPACK例程。对于三维系统,我们需要采用稀疏矩阵技术。在这里,我们基于众所周知的Lanczos技术,提出了一种稀疏矩阵例程的可能策略,该算法具有长期运行的算法和(部分)重新正交化的特点。这种方法比具有相同精度的LAPACK例程快大约两倍,因此将成为我们在二维问题上使用的标准。我们举例说明了这种方法,它可以提高在晶格上的K-Rb混合物中预形成偶极分子的效率。我们将局部密度近似与非均匀动力学平均场理论进行比较,以说明局部密度近似在低温下如何失效,并说明新算法的优势。对于三维问题,需要提高1000倍或更多倍的速度。最后,我们讨论一些有望实现该目标的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号