首页> 外文会议>2010 DoD High Performance Computing Modernization Program Users Group Conference >Dispersion Interactions in Calculations of Properties of Energetic Materials
【24h】

Dispersion Interactions in Calculations of Properties of Energetic Materials

机译:高能材料性能计算中的色散相互作用

获取原文

摘要

Until recently, first-principles calculations of potential energy surfaces (PES) were restricted to intermolecular interactions involving molecules containing just several atoms. This was due on one hand to high costs of wave-function-based electronic structure methods and, on the other hand, to the failure of the density functional theory (DFT) approaches to reproduce the dispersion part of intermolecular interactions. One solution to this problem is symmetry-adapted perturbation theory based on DFT description of monomers [SAPT(DFT)]. In applications to energetic materials, SAPT(DFT) predicted the correct crystal structure of RDX (1,3,5-trinitroperhydro-1,3,5-triazine). Recently, the complete PES of FOX-7 (1,1-diamino-2,2-dinitroethene) dimer was obtained using SAPT(DFT). Preliminary molecular dynamics simulations of the FOX-7 crystal show an improved agreement with experiment compared to literature results. A recently developed nearly-linearly scaling implementation of the SAPT(DFT) dispersion energy has been applied to interactions of energetic molecules. When the development of linearly-scaling SAPT(DFT) is finished, accurate studies of energetic molecules significantly larger than RDX and of other important systems (including biomolecules), containing in excess of one hundred atoms, will be possible. Another approach which can be applied to such systems is the dispersionless density functional (dlDF) method developed in our group which reproduces interaction energies with the dispersion component removed. The dispersion energy is then computed from an asymptotic function fitted to SAPT(DFT) dispersion energies of a training set, resulting in a method denoted as dlDF+D. Cross sections of the PES of the HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane) dimer calculated using dlDF+D are presented.
机译:直到最近,第一原理计算潜在能量表面(PE)的计算被限于涉及仅含有几个原子的分子的分子间相互作用。这是一方面到了基于波浪函数的电子结构方法的高成本,另一方面,在密度泛函理论(DFT)方法中再现分子间相互作用的分散部分的失败。该问题的一种解决方案是基于单体DFT描述的对称适应的扰动理论[SAPT(DFT)]。在适用于能量材料的应用中,SAPT(DFT)预测RDX的正确晶体结构(1,3,5-三硝基 - 1,3,5-三嗪)。最近,使用SAPT(DFT)获得Fox-7(1,1-二氨基-2,2-二硝基烯)二聚体的完整PES。与文学结果相比,Fox-7晶体的初步分子动力学模拟与实验有所改善。最近开发的SAPT(DFT)色散能的近乎线性缩放的实现已经应用于能量分子的相互作用。当完成线性缩放SAPT(DFT)的开发结束时,将有可能精确地研究大于RDX的能量分子和其他重要的系统(包括生物分子),其含有超过一百个原子。可以应用于这种系统的另一种方法是在我们的组中开发的分散密度官能(DLDF)方法,其再现分散分量的相互作用能量。然后从装配到训练集的SAPT(DFT)色散能量的渐近功能来计算色散能量,从而导致表示为DLDF + D的方法。呈现了使用DLDF + D计算的HMX(八烷基-1,3,5,7-四氮硝基-1,3,5,7-四氮烷基)二聚体的横截面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号