首页> 外文学位 >Calculations of the interactions of energetic ions with materials for protection of computer memory and biological systems.
【24h】

Calculations of the interactions of energetic ions with materials for protection of computer memory and biological systems.

机译:计算高能离子与材料的相互作用,以保护计算机内存和生物系统。

获取原文
获取原文并翻译 | 示例

摘要

Theoretical calculations were performed for the propagation and interactions of particles having high atomic numbers and energy through diverse shield materials including polymeric materials and epoxy-bound lunar regolith by using transport codes for laboratory ion beams and the cosmic ray spectrum. Heavy ions fragment and lose energy upon interactions with shielding materials of specified elemental composition, density, and thickness. A fragmenting heavy iron ion produces hundreds of isotopes during nuclear reactions, which are treated in the solution of the transport problem used here. A reduced set of 80 isotopes is sufficient to represent the charge distribution, but a minimum of 122 isotopes is necessary for the mass distribution. These isotopes are adequate for ion beams with charges equal to or less than 26. To predict the single event upset (SEU) rate in electronic devices, the resultant linear energy transfer (LET) spectra from the transport code behind various materials are coupled with a measured SEU cross section versus LET curve. The SEU rate on static random access memory (SRAM) is shown as a function of shield thickness for various materials. For a given mass the most effective shields for SEU reduction are materials with high hydrogen density, such as polyethylene. The shield effectiveness for protection of biological systems is examined by using conventional quality factors to calculate the dose equivalents and also by using the probability of the neoplastic transformation of shielded C3H10T1/2 mouse cells. The attenuation of biological effects within the shield and body tissues depends on the materials properties. The results predict that hydrogenous materials are good candidates for high-performance shields. Two biological models were used. Quantitative results depended upon model.
机译:通过使用实验室离子束和宇宙射线光谱的传输代码,对具有高原子序数和能量的粒子通过各种屏蔽材料(包括聚合物材料和环氧束缚的月球巨石)的传播和相互作用进行了理论计算。重离子会与指定元素组成,密度和厚度的屏蔽材料发生相互作用而碎裂并损失能量。分裂中的重铁离子会在核反应中产生数百种同位素,这些同位素可通过解决此处使用的运输问题加以处理。减少的80个同位素集足以表示电荷分布,但是对于质量分布,最少需要122个同位素。这些同位素适合于电荷等于或小于26的离子束。为了预测电子设备中的单事件翻转(SEU)速率,将各种材料背后的传输代码所产生的线性能量转移(LET)光谱与测量的SEU横截面与LET曲线。静态随机存取存储器(SRAM)上的SEU速率显示为各种材料的屏蔽层厚度的函数。对于给定的质量,降低SEU的最有效屏蔽是氢密度高的材料,例如聚乙烯。通过使用常规质量因子来计算剂量当量,并通过使用被屏蔽的C3H10T1 / 2小鼠细胞进行肿瘤转化的可能性,来检查保护生物系统的屏蔽效果。防护罩和身体组织内生物效应的减弱取决于材料的特性。结果表明,含氢材料是高性能屏蔽的良好候选材料。使用了两种生物学模型。定量结果取决于模型。

著录项

  • 作者

    Kim, Myung-Hee Yoon.;

  • 作者单位

    The College of William and Mary.;

  • 授予单位 The College of William and Mary.;
  • 学科 Chemistry Polymer.; Physics Elementary Particles and High Energy.; Engineering Nuclear.; Chemistry Radiation.; Radiation Biology.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);高能物理学;原子能技术;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号