【24h】

Attosecond dynamic imaging: Basic ideas, results, and hopes

机译:阿秒动态成像:基本思想,结果和希望

获取原文
获取外文期刊封面目录资料

摘要

The goal of ‘attosecond dynamic imaging’ is to follow electronic and nuclear dynamics in atoms and molecules with attosecond temporal resolution, with the dream of accomplishing this goal for isolated molecules. Attosecond dynamic imaging also includes the idea of combining attosecond temporal and Angstrom-scale spatial resolution - that is, making movies of electronic and nuclear dynamics in individual molecules. One can try several approaches to realize this dream, and this tutorial will focus on one such route: I will describe the main theoretical and experimental ideas that form the basis of using intense infrared (IR) laser fields for attosecond dynamic imaging, with or without the assistance of attosecond XUV pulses. The key idea in this approach is to remove an electron from the very atom or molecule one wants to image, accelerate it in an intense infrared laser field, and then bring it back to interrogate the parent ion within a fraction of the IR laser cycle. The potential for temporal resolution in this technique comes from the brevity of the electron-parent ion collision, also known as re-collision. The potential for spatial resolution comes from the de-Broglie wavelength of the returning electron. The tutorial will touch upon the following topics: • Molecular alignment with short laser pulses; • Strong-field ionization of molecules and laser-driven electron-ion recollison; • Key processes of interest: ionization, high harmonic generation, laser-induced electron diffraction; • High harmonic emission: how is attosecond time-resolution encoded? • High harmonic tomography of molecular orbitals: what works, what doesn''t, and what can be learned (if anything); • High harmonic spectroscopy of attosecond hole migration; • Electron-ion entanglement and its consequences; • Photo-electron spectra: ‘direct’ and ‘recollision’ electrons. How is attosecond t--ime-resolution encoded? • Photo-electron spectroscopy of ionizing orbitals: what can we learn from ionization rates and spectra of ‘direct’ electrons? • Spectra of the ‘recollision electrons’: electron diffraction and electron holography. • Control of electron - ion recollision: applications of multi-color fields, ionization by XUV pulses, etc; • Main challenges and perspectives.
机译:“原子秒动态成像”的目标是以原子秒的时间分辨率跟踪原子和分子中的电子和核动力学,并梦想为孤立的分子实现这一目标。阿秒动态成像还包括将阿秒时域和埃尺度空间分辨率相结合的想法,即制作单个分子中的电子和核动力学电影。一个人可以尝试几种方法来实现这个梦想,本教程将重点介绍这样一个途径:我将描述主要的理论和实验思想,这些思想和思想构成了使用强红外(IR)激光场进行亚秒动态成像的基础,无论有无阿秒XUV脉冲的辅助。这种方法的关键思想是从要成像的原子或分子中除去电子,在强烈的红外激光场中对其加速,然后将其带回以在IR激光周期的一小部分内询问母离子。这种技术中时间分辨率的潜力来自于电子-母体离子碰撞的短暂性,也称为重新碰撞。空间分辨率的潜力来自返回电子的de-Broglie波长。本教程将涉及以下主题:•使用短激光脉冲进行分子比对; •分子的强场电离和激光驱动的电子离子碰撞。 •感兴趣的关键过程:电离,高次谐波产生,激光诱导的电子衍射; •高谐波发射:如何对秒时间分辨率进行编码? •分子轨道的高次谐波层析成像:什么有效,什么无效以及可以学到的东西(如果有的话); •高谐波光谱,用于阿秒空穴迁移; •电子离子纠缠及其后果; •光电子能谱:“直接”和“碰撞”电子。阿秒t- -- ime分辨率编码? •电离轨道的光电子能谱:我们可以从电离速率和“直接”电子的光谱中学到什么? •“碰撞电子”的光谱:电子衍射和电子全息术。 •控制电子与离子的碰撞:施加多色场,通过XUV脉冲进行电离等; •主要挑战和观点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号