首页> 外文会议>OCEANS 2011 >Singular value decomposition utilizing parallel algorithms on graphical processors
【24h】

Singular value decomposition utilizing parallel algorithms on graphical processors

机译:利用图形处理器上的并行算法进行奇异值分解

获取原文
获取外文期刊封面目录资料

摘要

One of the current challenges in underwater acoustic array signal processing is the detection of quiet targets in the presence of noise. In order to enable robust detection, one of the key processing steps requires data and replica whitening. This, in turn, involves the eigen-decomposition of the sample spectral matrix, Cx = 1 over K Σ xKX(k)XH(k) where X(k) denotes a single frequency snapshot with an element for each element of the array. By employing the singular value decomposition (SVD) method, the eigenvectors and eigenvalues can be determined directly from the data without computing the sample covariance matrix, reducing the computational requirements for a given level of accuracy (van Trees, Optimum Array Processing). (Recall that the SVD of a complex matrix A involves determining V, Σ, and U such that A = UΣVH where U and V are orthonormal and Σ is a positive, real, diagonal matrix containing the singular values of A. U and V are the eigenvectors of AAH and AHA, respectively, while the singular values are the square roots of the eigenvalues of AAH.) Because it is desirable to be able to compute these quantities in real time, an efficient technique for computing the SVD is vital. In addition, emerging multicore processors like graphical processing units (GPUs) are bringing parallel processing capabilities to an ever increasing number of users. Since the computational tasks involved in array signal processing are well suited for parallelization, it is expected that these computations will be implemented using GPUs as soon as users have the necessary computational tools available to them. Thus, it is important to have an SVD algorithm that is suitable for these processors.
机译:水下声学阵列信号处理中的当前挑战之一是在存在噪声的情况下检测安静目标。为了实现可靠的检测,关键处理步骤之一需要数据和副本白化。反过来,这涉及在KΣ x K X(k)上样本光谱矩阵C x = 1的本征分解X H (k)其中X(k)表示单个频率快照,其中每个元素对应于数组的每个元素。通过采用奇异值分解(SVD)方法,可以直接从数据中确定特征向量和特征值,而无需计算样本协方差矩阵,从而降低了给定精度水平下的计算要求(van Trees,最佳阵列处理)。 (回想一下,复数矩阵A的SVD涉及确定V,Σ和U,使得A =UΣV H 其中U和V是正交的,而Σ是包含奇异点的正实对角矩阵U和V的值分别是AA H 和A H A的特征向量,而奇异值是AA 的特征值的平方根H 。)由于希望能够实时计算这些数量,因此一种有效的计算SVD的技术至关重要。此外,诸如图形处理单元(GPU)之类的新兴多核处理器正在为越来越多的用户带来并行处理功能。由于涉及阵列信号处理的计算任务非常适合并行化,因此,一旦用户拥有了可用的必要计算工具,就可以期望使用GPU来实现这些计算。因此,拥有适合于这些处理器的SVD算法非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号