首页> 外文会议>2011 Abstracts IEEE International Conference on Plasma Science >Effects of pre-pulses on extreme ultraviolet conversion efficiency in laser-produced tin plasmas
【24h】

Effects of pre-pulses on extreme ultraviolet conversion efficiency in laser-produced tin plasmas

机译:预脉冲对激光产生的锡等离子体中极紫外转换效率的影响

获取原文

摘要

Extreme ultraviolet (EUV) lithography is being considered for manufacturing the next generation of computer chips. However, a suitable source for EUV emission at 13.5 nm must be identified. The source must be able to provide reliable, clean, and powerful EUV emission at 13.5 nm with 2% bandwidth and be capable of meeting the demands of high volume manufacturing. Laser produced plasmas (LPP) have emerged as a promising source for EUV emission, but higher in-band conversion efficiency (CE) and debris control must first be realized.1 Tin is considered the material of choice for producing this plasma, as its plasma emits strongly in the EUV in-band region, contributed by various ionic stages (Sn8+ – Sn14+). However, the net emission of 13.5 nm photons is controlled by plasma opacity, which depends on level populations of different ionic states, ionization balance, and electron density. For obtaining the highest CE, ideal plasma temperatures and densities should be created for the longest possible period of time with the maximum collectable size.2 Reheating of a pre-formed plasma is one of the methods for controlling density and hence optimizing plasma opacity for maximum EUV emission.
机译:正在考虑使用极紫外(EUV)光刻技术来制造下一代计算机芯片。但是,必须确定适合13.5 nm的EUV发射的光源。该光源必须能够在13.5 nm处以2%的带宽提供可靠,清洁和强大的EUV发射,并能够满足大批量生产的需求。激光产生的等离子体(LPP)已经成为EUV发射的有希望的来源,但是必须首先实现更高的带内转换效率(CE)和碎片控制。 1 锡被认为是选择EUV的材料。产生这种等离子体的原因是,其等离子体在EUV带内区域强烈发射,这是由各种离子阶段(Sn 8 + – Sn 14 + )促成的。但是,13.5 nm光子的净发射受等离子体不透明度控制,这取决于不同离子态,电离平衡和电子密度的能级种群。为了获得最高的CE,应在尽可能长的时间内以最大的可收集尺寸创建理想的等离子体温度和密度。 2 预先加热形成的等离子体是控制密度的方法之一因此优化了血浆的不透明度,以实现最大的EUV发射。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号