首页> 外文会议>AIAA guidance, navigation, and control conference >CubeSat Attitude Control Testbed Design: Merritt 4-Coil per axis Helmholtz Cage and Spherical Air Bearing
【24h】

CubeSat Attitude Control Testbed Design: Merritt 4-Coil per axis Helmholtz Cage and Spherical Air Bearing

机译:立方体姿态控制试验平面设计:每轴Merritt 4线圈亥姆霍兹笼和球形空气轴承

获取原文

摘要

This paper describes the design, construction, and initial tests of a Merritt 4-coil per axis Helmholtz cage around a spherical air bearing for laboratory testing of a CubeSat's attitude determination and control system (ADCS). While numerical modeling and simulations are important for ADCS design and sensitivity studies, it is important to perform hardware-in-the-loop testing, which results in higher levels of confidence of on-orbit performance and lower risk. Attitude control systems measure the magnetic field with magnetometers, and actuate with torque rods or coils. These rods or coils use electromagnetic fields induced by the directional flow of current through the conducting coils to engage with the local magnetic field, and thus transfer momentum and spin the satellite. In order to test that that the attitude determination and control subsystem will perform as expected on orbit, it is important to test both the sensing capability of the magnetometer, the actuating capability of the torque rods, and the interface between the two. To this end, the MIT Space Systems Laboratory has constructed a three-axis Helmholtz cage using a Merritt 4-coil design to maximize uniform field volume around a spherical air bearing. This test bed allows for simulation of the Earth's magnetic field at the orbital altitude of the satellite, with the combination of a spherical air bearing which supports three degree-of-freedom (3DOF) rotation of the test article. Initial tests have demonstrated the success of producing a uniform magnetic field, as well as a generating a field that follows an 11th order model of Earth's IGRF magnetic field, by controlling the amount of current to applied to coils of copper wire through a PC interface. In future work, we will use this facility to test attitude determination and control system for satellites being built in the MIT Space Systems Lab, including a CubeSat called MicroMAS, the Microsized Microwave Atmospheric Satellite.
机译:本文描述的设计,建造和梅里特4线圈每轴亥姆霍兹绕了CubeSat的姿态确定和控制系统(ADCS)的实验室测试的球形空气轴承保持架的初始测试。虽然数值模拟和仿真是ADCS设计及敏感性的研究很重要,它来执行硬件在环测试,其结果在更高水平的在轨性能和更低风险的信心是很重要的。姿态控制系统测量与磁力的磁场,并与致动扭矩杆或线圈。这些杆或线圈使用由电流通过导电线圈的定向流动感应电磁场与局部磁场接合,从而传递动量和自旋卫星。为了测试该上轨道按预期的姿态确定和控制子系统将执行,它是测试两个磁力计,所述扭矩杆的致动能力,以及两者之间的界面的感测能力很重要。为此,该MIT空间系统实验室构建了使用梅里特4线圈设计以最大化围绕球形空气轴承均匀场体积三轴亥姆霍兹笼。该测试床允许在卫星的轨道高度的地球磁场的模拟,以支持所述测试品的3度的自由度(3DOF)旋转的球形空气轴承的组合。初始测试已,由控制电流的量,以通过PC接口施加到铜线的线圈显示出产生一个均匀的磁场,以及一个生成如下地球IGRF磁场的第11阶模型的字段的成功。在今后的工作中,我们将使用这个工具来测试姿态确定与控制系统的卫星正在建造的麻省理工学院的太空系统实验室,其中包括被称为立方体卫星MicroMAS的Microsized常压微波卫星。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号