首页> 外文会议>AIAA international space planes and hypersonic systems and technologies conference >Heat Transfer Analysis over Disc and Hemispherical Spike Attached to Blunt-Nosed Body at Mach 6
【24h】

Heat Transfer Analysis over Disc and Hemispherical Spike Attached to Blunt-Nosed Body at Mach 6

机译:圆盘和半球形尖峰在6马赫速度下的传热分析

获取原文

摘要

Aero-spike attached to a blunt body significantly alters its flow field and influences aerodynamic drag at high speeds. The dynamic pressure in the recirculation area is highly reduced and this leads to the decrease in the aerodynamic drag. Consequently, the geometry of the aero-spike has to be simulated in order to obtain a large conical recirculation region in front of the blunt body to get beneficial drag reduction. Axisymmetric compressible Navier-Stokes equations are solved using a finite volume discretization in conjunction with a multistage Runge-Kutta time stepping scheme. The effect of the various types of aero-spike configurations on the reduction of aerodynamic drag is evaluated numerically at Mach 6 at a zero angle of attack. The computed density contours agree well with the schlieren pictures. Additional modification to the tip of the spike to get the different type of flow field such as formation of shock wave, separation area and reattachment point are examined flat-disk spike and hemispherical disk spike attached to the blunt nosed body. One of the critical heating areas is at the stagnation point of a blunt body, where the incoming hypersonic flow is brought to rest by a normal shock and adiabatic compression. Therefore the problem of computing the heat transfer rate near the stagnation point needs a solution of the entire flow field from the shock to the spike body. The bow shock distance ahead of the hemispherical and flat-disc is compared with the analytical solution and an agreement found between them. The influence of the shock wave generated from the spike is used to analysis the pressure distribution, the coefficient of skin friction and the wall heat flux facing the spike surface to the flow direction. The numerical analysis gives complete flow field information over the spike surface including the stand-off distance shock, sonic line, and velocity gradient along the surface of the spike.
机译:附着在钝体上的气钉会显着改变其流场,并在高速下影响气动阻力。再循环区域中的动压大大降低,这导致了空气阻力的减小。因此,必须对气动尖峰的几何形状进行仿真,以便在钝体前面获得较大的圆锥形再循环区域,从而获得有益的减阻效果。轴对称可压缩Navier-Stokes方程使用有限体积离散化和多级Runge-Kutta时间步长方案进行求解。在零攻角下,以6马赫数数值评估了各种类型的气钉结构对减小空气阻力的影响。计算出的密度等高线与schlieren图片非常吻合。对尖刺的尖端进行了其他修改,以获取不同类型的流场,例如冲击波的形成,分离区域和重新连接点,并检查了平盘刺钉和半球形盘刺钉附接到钝头鼻形体上的情况。关键的加热区域之一是钝体的停滞点,在这里正常的冲击和绝热压缩使进入的超音速流停止。因此,计算停滞点附近的传热速率的问题需要解决从激波到长钉体的整个流场。将半球形和扁平圆盘前面的弓形激振距离与分析解决方案进行比较,并在两者之间达成协议。尖峰产生的冲击波的影响用于分析压力分布,皮肤摩擦系数和面向尖峰表面的流向的壁热通量。数值分析给出了尖峰表面的完整流场信息,包括沿尖峰表面的距离距离冲击,声波线和速度梯度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号