首页> 外文会议>International conference on nanochannels, microchannels and minichannels;ICNMM2010 >SIMULATION OF HEAT TRANSFER IN NANOSCALE FLOW USING MOLECULAR DYNAMICS
【24h】

SIMULATION OF HEAT TRANSFER IN NANOSCALE FLOW USING MOLECULAR DYNAMICS

机译:分子动力学模拟纳米尺度流中的传热

获取原文

摘要

We investigate heat transfer between parallel plates separated by liquid argon using two-dimensional molecular dynamics (MD) simulations incorporating with 6-12 Lennard-Jones potential between molecule pairs. In molecular dynamics simulation of nanoscale flows through nanochannels, it is customary to fix the wall molecules. However, this approach cannot suitably model the heat transfer between the fluid molecules and wall molecules. Alternatively, we use thermal walls constructed from the oscillating molecules, which are connected to their original positions using linear spring forces. This approach is much more effective than the one which uses a fixed lattice wall modeling to simulate the heat transfer between wall and fluid. We implement this idea in analyzing the heat transfer in a few cases, including the shear driven and poiseuille flow with specified heat flux boundary conditions. In this method, the work done by the viscous stress (in case of shear driven flow) and the force applied to the fluid molecules (in case of poiseuille flow) produce heat in the fluid, which is dissipated from the nanochannel walls. We present the velocity profiles and temperature distributions for the both chosen test cases. As a result of interaction between the fluid molecules and their adjacent wall molecules, we can clearly observe the velocity slip in the velocity profiles and the temperature jump in the cross-sectional temperature distributions.
机译:我们使用二维分子动力学(MD)模拟,并结合分子对之间的6-12 Lennard-Jones势,研究由液氩分隔的平行板之间的传热。在纳米级流经纳米通道的分子动力学模拟中,习惯上固定壁分子。然而,这种方法不能适当地模拟流体分子和壁分子之间的热传递。或者,我们使用由振荡分子构成的热壁,这些壁通过线性弹簧力连接到其原始位置。这种方法比使用固定的格子壁模型来模拟壁和流体之间的热传递的方法更为有效。我们在分析少数情况下的传热过程中实现了这一思想,包括剪切驱动和具有特定热通量边界条件的泊流。在这种方法中,由粘性应力(在剪切驱动流的情况下)和施加到流体分子的力(在泊水流的情况下)完成的功在流体中产生热量,这些热量从纳米通道壁上消散了。我们给出了两个所选测试用例的速度曲线和温度分布。由于流体分子及其相邻壁分子之间的相互作用,我们可以清楚地观察到速度分布中的速度滑移和横截面温度分布中的温度跃变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号