首页> 外文学位 >Molecular dynamics simulations of heat transfer in nanoscale liquid films.
【24h】

Molecular dynamics simulations of heat transfer in nanoscale liquid films.

机译:纳米级液膜传热的分子动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

Molecular Dynamics (MD) simulations of nano-scale flows typically utilize fixed lattice crystal interactions between the fluid and stationary wall molecules. This approach cannot properly model thermal interactions at the wall-fluid interface. In order to properly simulate the flow and heat transfer in nano-scale channels, an interactive thermal wall model is developed. Using this model, the Fourier's law of heat conduction is verified in a 3.24 nm height channel, where linear temperature profiles with constant thermal conductivity is obtained. The thermal conductivity is verified using the predictions of Green-Kubo theory. MD simulations at different wall wettability (epsilonof /epsilon) and crystal bonding stiffness values (K) have shown temperature jumps at the liquid/solid interface, corresponding to the well known Kapitza resistance. Using systematic studies, the thermal resistance length at the interface is characterized as a function of the surface wettability, thermal oscillation frequency, wall temperature and thermal gradient. An empirical model for the thermal resistance length, which could be used as the jump-coefficient of a Navier boundary condition, is developed. Temperature distributions in the nano-channels are predicted using analytical solution of the continuum heat conduction equation subjected to the new temperature jump condition, and validated using the MD results. Momentum and heat transfer in shear driven nano-channel flows are also investigated. Work done by the viscous stresses heats the fluid, which is dissipated through the channel walls, maintained at isothermal conditions. Spatial variations in the fluid density, kinematic viscosity, shear- and energy dissipation rates are presented. The energy dissipation rate is almost a constant for epsilon of/epsilon 0.6, which results in parabolic temperature profiles in the domain with temperature jumps due to the Kapitza resistance at the liquid/solid interfaces. Using the energy dissipation rates predicted by MD simulations and the continuum energy equation subjected to the temperature jump boundary conditions developed in this study, the analytical solutions are obtained for the temperature profiles, which agree well with the MD results.
机译:纳米级流动的分子动力学(MD)模拟通常利用流体与固定壁分子之间的固定晶格晶体相互作用。这种方法不能正确地模拟壁-流体界面处的热相互作用。为了正确模拟纳米级通道中的流动和传热,开发了一个交互式热壁模型。使用该模型,在3.24 nm高的通道中验证了傅里叶热传导定律,在该通道中获得了具有恒定导热率的线性温度曲线。使用Green-Kubo理论的预测来验证热导率。在不同的壁润湿性(ε/ε)和晶体键合刚度值(K)下的MD模拟显示,液/固界面处的温度跃变与众所周知的Kapitza电阻相对应。通过系统研究,界面处的热阻长度是表面润湿性,热振荡频率,壁温和热梯度的函数。建立了热阻长度的经验模型,该模型可以作为Navier边界条件的跳跃系数。使用在新的温度跃变条件下的连续热传导方程的解析解来预测纳米通道中的温度分布,并使用MD结果对其进行验证。还研究了剪切驱动的纳米通道流中的动量和热传递。由粘性应力完成的功加热了保持在等温条件下的流体,该流体通过通道壁消散。提出了流体密度,运动粘度,剪切和能量耗散率的空间变化。 ε/ε<0.6时,能量耗散率几乎是常数,这归因于液/固界面处的Kapitza电阻,在温度跃迁的区域中出现了抛物线温度曲线。使用由MD模拟预测的能量耗散率和在此研究中发展的,受温度跃变边界条件影响的连续能量方程,可以获得温度分布的解析解,这与MD结果非常吻合。

著录项

  • 作者

    Kim, Bo Hung.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Chemical.;Engineering Materials Science.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号