【24h】

Self-field Theory-new Photonic Insights

机译:自场理论-新的光子见解

获取原文

摘要

Self-Field Theory is a new description of electromagnetic interactions. At its heart are bispinorial motions for both the electromagnetic fields and the interacting particles. Among its recent successes it has solved a simple model of the hydrogen atom, obtained an analytic estimate for the mass of the photon, and provided the first glimpses of structure within the photon. This may yield an organizational structure for bosons reminiscent in some ways to the chemical table that was glimpsed by Mendeleev in 1860 via a two-dimensional array of elemental properties. The self-field formulation obtains an analytic expression for Planck's number providing a basis for its understanding as a variable of motion applying equally to the electron, the proton and the photon. While there are many differences, this report shows how the fields of Self-Field Theory vary from classical electromagnetics and quantum field theory. In classical electromagnetics the field covers all solid angles around a charge and is defined as a vector. Quantum Field Theory models the field as quanta shown as small wavy lines within Feynman diagrams; the mathematics does not specify an actual path, only the start and the finish points where a Dirac-delta function is used to insert a propagator kernel or Greens function. Basically Quantum Field Theory models the field as an impulse specified at space points. The uncertainty within Quantum Field Theory is related to the lack of a complete electromagnetic bispinorial field form. The fields in Self-Field Theory are discrete streams of photons, rather than the continuous fields of Maxwell's classical electromagnetics. The photons are specified via a bispinorial function as spatially and time-varying motions including spiral-helices between the electron and proton of the hydrogen atom. Thus two distances are involved in the bispinorial motions not one, fundamentally different to CEM and QFT.
机译:自场理论是电磁相互作用的新描述。它的核心是针对电磁场和相互作用粒子的双轴运动。在最近的成功中,它解决了氢原子的简单模型,获得了光子质量的解析估计,并提供了光子内部结构的第一印象。这可能会产生某种玻色子的组织结构,以某种方式让人联想到门捷列夫在1860年通过二维元素性质数组瞥见的化学表。自场公式获得了普朗克数的解析表达式,为普朗克数的理解提供了基础,因为普朗克数是运动变量,同样适用于电子,质子和光子。尽管存在许多差异,但本报告显示了自场论的领域与经典电磁学和量子场论如何不同。在经典电磁学中,该场覆盖了电荷周围的所有立体角,并定义为矢量。量子场论将场量化为费曼图中的小波浪线所示的量子。数学并没有指定实际路径,仅指定了Dirac-delta函数用于插入传播内核或Greens函数的起点和终点。基本上,量子场论将场建模为在空间点处指定的脉冲。量子场论中的不确定性与缺乏完整的电磁双旋峰场形式有关。自场论中的场是光子的离散流,而不是麦克斯韦经典电磁学的连续场。通过双旋函数将光子指定为空间和时变运动,包括氢原子的电子与质子之间的螺旋螺旋。因此,双轴运动中涉及两个距离,而不是一个距离,这与CEM和QFT根本不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号