【24h】

Geothermite Reactions for In-Situ Resource Utilization on the Moon and Beyond

机译:地热资源在月球及其他地方的地热反应

获取原文

摘要

Utilization of in-situ lunar resources will decrease launch mass and thus the expense of missions to the Moon, and will also give a lunar base a degree of self-sufficiency. Geothermite©reactions utilize an in-situ mixture of minerals and a reducing agent as reactants in a thermite-type chemical reaction. The geothermite©reaction investigated within this study used a mixture of JSC-1A series of lunar regolith simulant and aluminum powder as reactants. The JSC-1A series of simulant is an approximation of chemical and mineralogical characteristics of actual lunar regolith. Upon application of heat, an exothermic reaction initiated, and a coherent ceramic-composite material was produced. Experiments have shown that a geothermite© reaction occurred within the regolith-aluminum mixture over a range of reactant proportions.XRD analysis indicated that silicon, corundum (AI2O3), grossite (CaAUOy), and spinel (MgAl_2O_4)were common species present in the reaction product. SEM/EDS analysis of samples reacted in a standard atmosphere showed formation of nanoscale whiskers containing aluminum, oxygen, and nitrogen. XRD results indicate that the whiskers are likely to be composed of aluminum oxides and aluminum nitrides. The compressive strength of products formed in a standard atmosphere was observed to vary depending on reactant proportions and particle size of the simulant. The largest mean compressive strength was found to be 18 ± 3.7 MPa. To better simulate conditions on the lunar surface, further experiments were conducted in a vacuum environment. No whisker formation was observed within samples reacted in a vacuum environment. It is hypothesized that the removal of gases by the vacuum environment decreased overall interparticle contact by preventing solid-gas chemical reactions. Neutron radiation transmission measurements were conducted on two samples to determine the preliminary radiation shielding capability of the reaction product.
机译:利用原位月球资源将减少发射质量,从而减少对月球的飞行任务,还将使月球基地具有一定程度的自给自足。地热反应利用矿物质和还原剂的原位混合物作为铝热剂型化学反应中的反应物。在这项研究中研究的地热反应使用了JSC-1A系列月球重石模拟物和铝粉的混合物作为反应物。 JSC-1A系列模拟物是实际月球重石的化学和矿物学特征的近似值。加热时,放热反应开始,并产生粘结的陶瓷复合材料。实验表明,在一定比例的反应物比例范围内,地热铝-铝混合物中发生了地热反应。 X射线衍射分析表明,硅,刚玉(Al2O3),钙钛矿(CaAUOy)和尖晶石(MgAl_2O_4)是反应产物中常见的物质。在标准气氛下反应的样品的SEM / EDS分析表明,形成了含有铝,氧和氮的纳米晶须。 XRD结果表明晶须可能由氧化铝和氮化铝组成。观察到在标准气氛中形成的产物的抗压强度根据反应物的比例和模拟物的粒径而变化。发现最大的平均抗压强度为18±3.7MPa。为了更好地模拟月球表面的状况,在真空环境中进行了进一步的实验。在真空环境下反应的样品中未观察到晶须形成。假设通过真空环境去除气体通过防止固体气体化学反应而降低了整体颗粒间接触。对两个样品进行中子辐射透射测量,以确定反应产物的初步辐射屏蔽能力。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号