首页> 外文会议>ASME international heat transfer conference;IHTC14 >HEAT TRANSFER MECHANISMS OF PROPANE BOILING ON HORIZONTAL STEEL TUBES WITH SMOOTH AND ENHANCED SURFACES
【24h】

HEAT TRANSFER MECHANISMS OF PROPANE BOILING ON HORIZONTAL STEEL TUBES WITH SMOOTH AND ENHANCED SURFACES

机译:光滑和强化表面的水平钢管上丙烷沸腾的传热机理

获取原文

摘要

The trend towards a better understanding of the fundamentals of nucleate boiling in re-entrant cavities is supported by the variation of the heating surface's characteristics and the identification of parameters influencing the heat transfer at enhanced tubes. The optimized surface of enhanced evaporator tubes supports the bubble formation by providing stable nucleation sites, which are cavities that trapped the necessary amount of vapor to generate the next bubble. The optimal size of the cavities for bubble formation depends on various thermodynamic properties of the fluid and the wall material. The knowledge of these physical mechanisms is important for the further optimization.The influence of micro- and macrostructures on the overall heat transfer coefficient is investigated with the refrigerant R134a and the hydrocarbon propane (R290) boiling in a wide range of reduced pressures (p~(*) = p_(s)/p_(c) = 0.03 to 0.5) and heat fluxes (0.05 to 100 kW/m~(2)). The measurements are carried out using a standard apparatus and a horizontally positioned, electrically heated surface with various wall materials. Two different materials - copper and mild steel - with the same surface preparation by polishing are investigated. Furthermore, heat transfer measurements are carried out on a plain mild steel tube and on an industrially manufactured surface of the GEWA-PB type. The polished surfaces demonstrate a deterministic microstructure, the roughness parameters depends strongly on the measurement direction. The heat transfer coefficient as function of the heat flux of the polished copper tube can be described by the correlation of the VDI Heat Atlas, while the mild steel surface differ from former investigations due to thedeep re-entrant cavities remaining from the drawn surface. The onset of boiling is nearly the same of both materials because of these cavities on the mild steel surface.As presented in the recent years, the heat transfer of nucleate boiling at tubes with subsurface channels can be divided into different domains, each influenced by different parameters like wettability, the product of vapor density and evaporation enthalpy. The identification of parameters influencing the bubble formation is done by heat transfer measurements, highspeed-video recording and photographic documentation. The experimental results of this work are compared to results of the polished surfaces. The heat transfer coefficient increases drastically for the enhanced tube, especially for beginning nucleation. The same oc-q-relationship as on plain tubes is observed for higher pressures and heat fluxes but for three times higher values of the heat transfer coefficient α.
机译:加热表面特性的变化和影响增强管传热的参数的确定,为更好地理解凹腔内核沸腾基本原理的趋势提供了支持。增强型蒸发器管的优化表面通过提供稳定的成核位置来支持气泡的形成,这些成核位置是捕获必要量的蒸气以产生下一个气泡的空腔。用于气泡形成的腔的最佳尺寸取决于流体和壁材料的各种热力学性质。这些物理机制的知识对于进一步优化很重要。 研究制冷剂R134a和碳氢丙烷(R290)在较大的减压范围内沸腾时(p〜(*)= p_(s)/ p_(c)的微观结构和宏观结构对整体传热系数的影响。 = 0.03至0.5)和热通量(0.05至100 kW / m〜(2))。使用标准设备和带有各种墙壁材料的水平放置的电加热表面进行测量。研究了两种不同的材料-铜和低碳钢-通过抛光进行相同的表面处理。此外,在普通的低碳钢管和GEWA-PB型工业生产的表面上进行传热测量。抛光的表面显示出确定的微观结构,粗糙度参数在很大程度上取决于测量方向。传热系数是抛光铜管热通量的函数,可以通过VDI热图集的相关性来描述,而低碳钢的表面则与以前的研究有所不同。 绘制表面上残留的深凹腔。由于软钢表面上的这些孔洞,两种材料的沸腾开始几乎相同。 如近年来所提出的,具有地下通道的管中成核沸腾的传热可以分为不同的区域,每个区域都受不同参数的影响,例如润湿性,蒸汽密度和蒸发焓的乘积。可以通过传热测量,高速视频记录和摄影文档来确定影响气泡形成的参数。将这项工作的实验结果与抛光表面的结果进行比较。对于增强的管,尤其对于开始成核,传热系数急剧增加。对于较高的压力和热通量,可以观察到与普通管相同的oc-q关系,但是对于传热系数α,则是三倍的高值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号