首页> 外文会议>ASME International Heat Transfer Conference >HEAT TRANSFER MECHANISMS OF PROPANE BOILING ON HORIZONTAL STEEL TUBES WITH SMOOTH AND ENHANCED SURFACES
【24h】

HEAT TRANSFER MECHANISMS OF PROPANE BOILING ON HORIZONTAL STEEL TUBES WITH SMOOTH AND ENHANCED SURFACES

机译:水平钢管用光滑型钢管沸腾的传热机制

获取原文

摘要

The trend towards a better understanding of the fundamentals of nucleate boiling in re-entrant cavities is supported by the variation of the heating surface's characteristics and the identification of parameters influencing the heat transfer at enhanced tubes. The optimized surface of enhanced evaporator tubes supports the bubble formation by providing stable nucleation sites, which are cavities that trapped the necessary amount of vapor to generate the next bubble. The optimal size of the cavities for bubble formation depends on various thermodynamic properties of the fluid and the wall material. The knowledge of these physical mechanisms is important for the further optimization. The influence of micro- and macrostructures on the overall heat transfer coefficient is investigated with the refrigerant R134a and the hydrocarbon propane (R290) boiling in a wide range of reduced pressures (p~* = p_s/p_c = 0.03 to 0.5) and heat fluxes (0.05 to 100 kW/m~2). The measurements are carried out using a standard apparatus and a horizontally positioned, electrically heated surface with various wall materials. Two different materials - copper and mild steel - with the same surface preparation by polishing are investigated. Furthermore, heat transfer measurements are carried out on a plain mild steel tube and on an industrially manufactured surface of the GEWA-PB type. The polished surfaces demonstrate a deterministic microstructure, the roughness parameters depends strongly on the measurement direction. The heat transfer coefficient as function of the heat flux of the polished copper tube can be described by the correlation of the VDI Heat Atlas, while the mild steel surface differ from former investigations due to the deep re-entrant cavities remaining from the drawn surface. The onset of boiling is nearly the same of both materials because of these cavities on the mild steel surface. As presented in the recent years, the heat transfer of nucleate boiling at tubes with subsurface channels can be divided into different domains, each influenced by different parameters like wettability, the product of vapor density and evaporation enthalpy. The identification of parameters influencing the bubble formation is done by heat transfer measurements, highspeed-video recording and photographic documentation. The experimental results of this work are compared to results of the polished surfaces. The heat transfer coefficient increases drastically for the enhanced tube, especially for beginning nucleation. The same α-q-relationship as on plain tubes is observed for higher pressures and heat fluxes but for three times higher values of the heat transfer coefficient α.
机译:通过加热表面特征的变化和影响增强管热传递的参数的变化,支持更好地了解再参与者沸腾在再入腔内的核心沸腾的基础趋势。增强蒸发器管的优化表面通过提供稳定的成核位点来支持气泡形成,这是捕获必要量的蒸气的空腔以产生下一个泡沫。气泡形成的空腔的最佳尺寸取决于流体和壁材料的各种热力学性质。这些物理机制的知识对于进一步的优化很重要。用制冷剂R134a和烃丙烷(R290)在宽范围的压力范围内(p〜* = p_s / p_c = 0.03至0.5)和热通量,研究了微观和丙烷对整体传热系数对整体传热系数的影响(0.05至100 kW / m〜2)。测量使用标准装置和水平定位的电加热表面,具有各种壁材料。研究了两种不同的材料 - 铜和温和钢 - 通过抛光具有相同的表面制备。此外,传热测量在普通的温和钢管上以及在GEWA-PB型的工业制造的表面上进行。抛光表面展示了确定性的微观结构,粗糙度参数在测量方向上强烈取决于。作为抛光铜管的热通量的函数的传热系数可以通过VDI热ATLAS的相关来描述,而温和的钢表面与前者的钢表面不同,由于留下从拉伸表面留下的深层再参赛腔。由于温和钢表面上的这些空腔,两种材料的沸腾发作几乎是相同的。如近年来,具有地下通道的管子中的核心沸腾的热传递可以分为不同的结构域,每个区域受润湿性等不同参数的影响,蒸气密度和蒸发焓的产物。通过传热测量,高速 - 视频记录和摄影文档来完成影响气泡形成的参数的识别。将该工作的实验结果与抛光表面的结果进行比较。对于增强管,传热系数急剧增加,特别是对于开始成核来增加。观察到与普通管相同的α-Q关系,用于更高的压力和热通量,但是传热系数α的较高值较高的三倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号