首页> 外文会议>IMECE2009;ASME international mechanical engineering congress and exposition >NANOCRYSTALLINE FCC THIN FILMS ARE MORE PRONE TO RT CREEP THAN WHAT WE THINK
【24h】

NANOCRYSTALLINE FCC THIN FILMS ARE MORE PRONE TO RT CREEP THAN WHAT WE THINK

机译:纳米晶FCC薄膜比我们认为的更容易发生RT蠕变

获取原文

摘要

Although nanocrystalline (Nc) metallic thin films are excellent candidate materials for Microelectromechanical Systems (MEMS) and microelectronics due to their outstanding yield strength, serious reliability concerns arise from their increased room temperature creep rates. A comprehensive experimental investigation was carried out to extract the strain-rate dependent mechanical behavior of Au (38 nm grain size) and Ni (20 nm grain size) micron-thin films conducted for the very first time at strain rates in the broad range of 10~(-6) - 10 /s which spans time scales from ms to hours. Nc-Au films demonstrated a clear bi-linear change in their inelastic properties, i.e. the elastic limit and its yield strength, while the Nc- Ni films showed a linear increase in their inelastic properties over the same loading rates. This unexpected trend for the Au films emphasized the significant contribution of room temperature (RT) creep at strain rates between 10~(-6) - 10~(-4) /s, at which rate, larger grain size materials are not prone to creep at RT. This realization prompted a series of novel microscale creep experiments, the first of their kind, at time scales of 10~4-10~5 s. An important finding was that the first stage of creep, primary creep, proceeds at a very fast rate, of the order of 10~(-7) /s, lasting for 5-6 hours after the application of a stress. Furthermore, multi-stage creep experiments revealed that the primary creep rate decreased with the order of creep cycle, while the steady state creep response remained the same in all creep cycles. This creep response of nanocrystalline FCC films was modeled via a non-linear viscoelastic creep model that captured the effect of applied stress on both primary and steady-state creep regimes.
机译:尽管纳米晶(Nc)金属薄膜由于其出色的屈服强度而成为微机电系统(MEMS)和微电子学的极佳候选材料,但由于其室温蠕变速率的提高,严重影响了可靠性。进行了全面的实验研究,提取了首次在宽范围的应变速率下进行的Au(38 nm晶粒)和Ni(20 nm晶粒)微米薄膜的应变率相关的机械行为。 10〜(-6)-10 / s,时间范围从ms到小时。 Nc-Au薄膜的非弹性性质(即弹性极限及其屈服强度)表现出明显的双线性变化,而Nc-Ni薄膜在相同的加载速率下其非弹性性质呈线性增加。 Au薄膜的这种出乎意料的趋势强调了在10〜(-6)-10〜(-4)/ s的应变速率下室温(RT)蠕变的显着贡献,在这种速率下,较大晶粒尺寸的材料不易产生在RT爬行。这种认识促成了一系列新颖的微尺度蠕变实验,这是同类实验中的第一个,时间尺度为10〜4-10〜5 s。一个重要的发现是蠕变的第一阶段,即初级蠕变,以非常快的速度进行,大约为10〜(-7)/ s,在施加应力后持续了5-6小时。此外,多阶段蠕变实验表明,初级蠕变速率随蠕变周期的顺序降低,而稳态蠕变响应在所有蠕变周期中均保持不变。纳米晶FCC薄膜的这种蠕变响应是通过非线性粘弹性蠕变模型建模的,该模型捕获了施加应力对初始和稳态蠕变状态的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号