首页> 外文会议>IMECE2009;ASME international mechanical engineering congress and exposition >SIMULATION OF COMBUSTION AND THERMAL-FLOW INSIDE A PETROLEUM COKE ROTARY CALCINING KILN, PART 2: ANALYSIS OF EFFECTS OF TERTIARY AIRFLOW AND ROTATION
【24h】

SIMULATION OF COMBUSTION AND THERMAL-FLOW INSIDE A PETROLEUM COKE ROTARY CALCINING KILN, PART 2: ANALYSIS OF EFFECTS OF TERTIARY AIRFLOW AND ROTATION

机译:石油焦回转窑内燃烧和热流模拟,第2部分:第三气流和回转效应的分析

获取原文

摘要

A computational model is established to simulate the combustion and thermal-flow behavior inside a petcoke rotary calcining kiln. The results show that peak temperature is located at the tertiary air zone and a cold region that exists between the natural gas combustion zone and the tertiary air zone causes the coke bed to lose heat to the gas stream. The cold tertiary air injections reduce the gas temperature inside the kiln, so preheating the tertiary air using extracted gas or other waste energy is essential to saving energy. The devolatilization rate and location have a pronounced effect on the simulated temperature distribution.As the calcining kiln rotates, the tertiary air injection nozzles will move relative to the coke bed and exert cyclic air-bed interactions. At zero angular position, the air injection nozzles are diametrically located away from the bed, so the interactions between the tertiary air jets and coke bed are minimal. As the kiln rotates to a 180-degree position, the stem of the air injection nozzles are actually buried inside the coke bed with the nozzles protruding outward from the bed. At this position, the tertiary air jets will provide a fresh layer of air just above the coke bed, and the interaction between the air flow and coke bed becomes strong. The 45° rotational angle case shows a better calcination with a 100 K higher bed surface temperature at the discharge end compared to the rest of rotational angles. Without including the coke fines combustion and the coke bed, the lumped gas temperature for the rotational cases shows a peak temperature of 1,400 K at Z/D = 2, which is due to natural gas combustion; the lowest temperature is around 1,075 K at two locations, Z/D = 4 and 8, respectively. The exhaust gas temperature is approximately 1,100K.
机译:建立了计算模型,以模拟石油焦回转窑内的燃烧和热流行为。结果表明,峰值温度位于第三空气区,天然气燃烧区与第三空气区之间存在的寒冷区域使焦炭床散失热量。三次冷空气的注入降低了窑内的气体温度,因此使用提取的气体或其他废能对三次空气进行预热对于节约能源至关重要。脱挥发分的速率和位置对模拟的温度分布有显着影响。 随着煅烧窑的旋转,三次空气喷射喷嘴将相对于焦炭床移动并产生周期性的气床相互作用。在零角位置处,空气喷嘴的直径沿径向远离床,因此三次空气射流与焦炭床之间的相互作用极小。当窑旋转到180度位置时,空气喷嘴的茎杆实际上埋在焦炭床内部,而喷嘴则从焦炭床向外突出。在此位置,第三级空气喷射器将在焦炭床的正上方提供新鲜的空气层,并且气流与焦炭床之间的相互作用变强。与其余旋转角度相比,在45°旋转角度的情况下,出料端的床面温度高100 K时,煅烧效果更好。在不包括焦炭细粉燃烧和焦炭床的情况下,旋转情况下的集总气体温度在Z / D = 2时显示出1400 K的峰值温度,这是由于天然气燃烧引起的。 Z / D = 4和8这两个位置的最低温度分别约为1,075K。废气温度约为1,100K。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号