首页> 外文会议>ASME pressure vessels and piping conference;PVP2009 >PREVENTION OF TRANSFORMER TANK EXPLOSION: PART 3: DESIGN OF EFFICIENT PROTECTIONS USING NUMERICAL SIMULATIONS
【24h】

PREVENTION OF TRANSFORMER TANK EXPLOSION: PART 3: DESIGN OF EFFICIENT PROTECTIONS USING NUMERICAL SIMULATIONS

机译:防止变压器储罐爆炸:第3部分:使用数值模拟设计有效的保护装置

获取原文
获取外文期刊封面目录资料

摘要

Electricity markets are very competitive and in order to limit costs, companies often reduce their investments by using aging equipment and by overloading their transformers. For these reasons, oil-filled transformer explosions are becoming more and more frequent. They are caused by electrical arcs occurring in transformer tanks. Within milliseconds, arcs vaporize the surrounding oil and the generated gas is pressurized because the liquid inertia prevents its expansion. The pressure difference between the gas bubble and the surrounding liquid oil generates a dynamic pressure peak, which propagates and interacts with the tank. Then, the reflections generate pressure waves that build up the static pressure, leading to tank rupture since tanks are not designed to withstand such levels of static pressure. This results in dangerous explosions, expensive damages and possible environmental pollution. Despite all these risks, and contrarily to usual pressure vessels, no specific standard has been set to protect sealed transformer tanks subjected to large dynamic overpressures.To limit the consequences of an explosion, protective walls surrounding transformers can contain the explosion while sprinklers may extinguish the induced fire. In order to extend this chain of protections to the transformer itself, a strategy to avoid transformer tank rupture was developed and presented at the previous PVP08 Conference (PVP2008-61526 - Prevention of Transformer Tank Explosion: Part 1). The concept of this strategy is based on the direct mechanical response of a depressurization set to the inner dynamic pressure induced by electrical faults. In the same paper, the efficiency of this depressurization strategy was experimentally shown: if the oil evacuation through the depressurization set is activated within milliseconds by the first dynamic pressure peak before static pressure increases, the explosion can be prevented.The use of these protections eliminates the need to design transformer tanks as pressure vessels, which by application of the ASME standard would require a significant increase of the the shell thickness.Complementarily, a compressible two-phase flow numerical simulation tool based on a 3D finite volume method was developed to study transformer explosions and possible strategies for their prevention. Its theoretical bases were detailed in the PVP08 ASME Conference (PVP2008-61453 -Prevention of Transformer Tank Explosion: Part 2). The current paper shows the applications of this simulation software as a decision making tool, especially toward improving the design of real mechanical transformer protections. Some guidelines to optimize the efficiency of transformer protections are suggested thus contributing to a possible standard setting.
机译:电力市场竞争激烈,为了限制成本,公司经常通过使用老化的设备和使变压器超负荷来减少投资。由于这些原因,充满油的变压器爆炸变得越来越频繁。它们是由变压器油箱中产生的电弧引起的。在几毫秒内,电弧会蒸发周围的油,并且由于液体惯性阻止其膨胀,因此产生的气体被加压。气泡和周围的液体油之间的压力差会产生动态压力峰值,该压力峰值会传播并与油箱相互作用。然后,反射会产生积聚静压力的压力波,导致储罐破裂,因为储罐的设计不能承受这种水平的静压。这会导致危险的爆炸,昂贵的损失以及可能的环境污染。尽管存在所有这些风险,并且与常规压力容器相反,但没有设置特定的标准来保护承受较大动态超压的密封变压器油箱。 为了限制爆炸的后果,变压器周围的防护墙可以控制爆炸,而洒水喷头则可以扑灭引起的火灾。为了将保护链扩展到变压器本身,已制定了避免变压器箱破裂的策略,并在上一届PVP08大会(PVP2008-61526-防止变压器箱爆炸:第1部分)中提出。此策略的概念基于 减压设定为电气故障引起的内部动压。在同一篇文章中,通过实验证明了该降压策略的效率:如果在静压增加之前通过第一个动压峰在几毫秒之内激活了通过降压装置进行的油排空,则可以防止爆炸。 这些保护措施的使用消除了将变压器油箱设计为压力容器的需要,而通过应用ASME标准将需要显着增加壳体的厚度。 作为补充,开发了一种基于3D有限体积法的可压缩两相流数值模拟工具,以研究变压器爆炸和预防爆炸的策略。在PVP08 ASME大会(PVP2008-61453-防止变压器油箱爆炸:第2部分)中详细介绍了其理论基础。当前的论文展示了该仿真软件作为决策工具的应用,特别是在改进实际机械变压器保护的设计方面。建议了一些优化变压器保护效率的准则,从而有助于可能的标准设置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号