【24h】

System optimiztion of hot water concentrated solar thermoelectric generation

机译:热水浓缩太阳能热电发电机的系统优化

获取原文

摘要

In this report, we describe the design of a concentrated solar thermoelectric (TE) system which can provide both electricity and hot water. Today''s thermoelectric materials have a relatively low efficiency (∼6% for temperature difference across the thermoelement on the order of 300°C). However since thermoelectrics don''t need their cold side to be near room temperature, (in another word, one can chose the particular thermoelectric material to match to the operational temperature) it is possible to use the waste heat to provide hot water and this makes the overall efficiency of the combined system to be quite high. A key factor in the optimization of the thermoelectric module is the thermal impedance matching with the incident solar radiation, and also with the hot water heat exchanger on the cold side of the thermoelectric module. We have developed an analytic model for the whole system and optimized each component in order to minimize the material cost. TE element fill factor is found to be an important parameter to optimize at low solar concentrations (<50) in order to obtain the highest amount of electric power generated per mass of the thermoelectric elements. Similarly the co-optimization of the microchannel heat exchanger and the TE module can be used to minimize the amount of material in the heat exchanger and the pumping power required for forced convection liquid cooling. Changing the amount of solar concentration, changes the input heat flux and this is another parameter that can be optimized in order to reduce the cost of heat exchanger (by size), the tracking requirement and the whole system. A series of design curves for different solar concentration are obtained. It is shown that the overall efficiency of the system can be more than 80% at 200× concentration which is independent of the material ZT (TE figure-of-merit). For a material with ZThot∼0.9, the electrical conversion efficiency is ∼10--%. For advanced materials with ZThot∼ 2.8, the electrical conversion efficiency could reach ∼21%.
机译:在此报告中,我们描述了可同时提供电力和热水的集中式太阳能热电(TE)系统的设计。当今的热电材料效率相对较低(整个热电元件的温度差约为300°C,约为6%)。但是,由于热电设备的冷端不需要接近室温,(换句话说,人们可以选择特定的热电材料来匹配工作温度),因此有可能利用废热提供热水,而这使组合系统的整体效率很高。优化热电模块的关键因素是热阻抗与入射的太阳辐射相匹配,并且与热电模块冷侧的热水热交换器相匹配。我们为整个系统开发了一个分析模型,并对每个组件进行了优化,以最大程度地降低材料成本。发现TE元素填充因子是在低太阳能浓度(<50)时进行优化以获取每质量热电元件产生的最大电量的重要参数。类似地,微通道热交换器和TE模块的共同优化可用于使热交换器中的材料量和强制对流液体冷却所需的泵送功率最小化。改变太阳光的浓度,改变输入的热通量,这是可以优化的另一个参数,以降低热交换器的成本(按尺寸),跟踪要求和整个系统。获得了一系列针对不同日照浓度的设计曲线。结果表明,在200x浓度下,系统的整体效率可以超过80%,这与材料ZT(TE品质因数)无关。对于ZT hot 约为0.9的材料,电转换效率约为10- -- %。对于ZT hot 约为2.8的先进材料,其电转换效率可以达到约21%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号