首页> 外文会议>ASME international mechanical engineering congress and exposition;IMECE2008 >COMPARING PIEZOELECTRIC AND ELECTROOSMOTIC MICROPUMPS FOR BIOMEDICAL DEVICES
【24h】

COMPARING PIEZOELECTRIC AND ELECTROOSMOTIC MICROPUMPS FOR BIOMEDICAL DEVICES

机译:生物医学设备的压电和电渗流微泵的比较

获取原文

摘要

A micropump is an essential component of a microfluidic lab-on-a-chip device, especially for their biomedical applications. Based on their actuation method to drive the fluid flow, pumps may be categorized as mechanical or non-mechanical devices. In our proposed paper, we will report our comparative study of the most promising micropumps in each of these categories: a piezoelectrically-actuated micropump (PAμP) and an electroosmotic micropump (EOμP). A PAμP requires relatively high applied voltage, but provides high flow rates and has emerged to be the dominant type of micropump in biomedical applications. A valveless diffuser-nozzle micropump, driven by an oscillating membrane, has an important advantage, since the fabrication of any additional moving part, such as a check valve, would add significantly to its cost and render a more failure-prone device. The piezoelectrically actuated, valveless micropumps use moving mechanical parts to pump fluid and control the flow with optimized actuation frequency and applied voltage. In the present study, the microflow-structure interaction in the PAμP is modeled using an arbitrary Lagrangian-Eulerian method including a parametric study of applied voltage and frequency. An EOμP consists of multiple micron-scale channels in parallel that are subjected to the electroosmotic effect. However, a major drawback in the conventional design of an EOμP is the need for a high driving voltage to increase the flow rate or to overcome the back pressure. In the present study, a low-voltage EOμP is proposed and computationally modeled. Oursimulations are performed in order to study the low-voltage EOμP for its various flow rate and back pressure characteristics. In the proposed paper, we will discuss our comparisons of PAμP and EOμP, with respect to their actuation mechanisms, applied voltages, pump sizes, flow rates and back pressures.
机译:微型泵是微流体芯片实验室设备的重要组成部分,特别是对于其生物医学应用而言。基于其驱动流体流动的致动方法,泵可分为机械或非机械设备。在我们提出的论文中,我们将报告我们对每种类别中最有前途的微型泵的比较研究:压电驱动微型泵(PAμP)和电渗微型泵(EOμP)。 PAμP需要相对较高的施加电压,但提供高流速,并且已成为生物医学应用中微型泵的主要类型。由振动膜片驱动的无阀扩散器-喷嘴微型泵具有重要的优势,因为制造任何额外的运动部件(如止回阀)会大大增加其成本,并使设备更容易出现故障。压电驱动的无阀微型泵使用运动的机械零件来泵送流体,并以最佳的驱动频率和施加的电压来控制流量。在本研究中,使用任意拉格朗日-欧拉方法对PAμP中的微流-结构相互作用进行建模,该方法包括对施加电压和频率的参数研究。 EOμP由平行的多个微米级通道组成,这些通道受到电渗作用。然而,传统的EOμP设计的主要缺点是需要较高的驱动电压以增加流速或克服背压。在本研究中,提出了一种低压EOμP并对其进行了计算建模。我们的 为了研究低压EOμP的各种流量和背压特性,进行了仿真。在本文中,我们将讨论PAμP和EOμP的比较,包括它们的致动机理,施加的电压,泵的尺寸,流速和背压。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号