首页> 外文会议>HT2008;ASME summer heat transfer conference >ATOMIC-SCALE THREE-DIMENSIONAL PHONONIC CRYSTALS WITH A LOWER THERMAL CONDUCTIVITY THAN THE EINSTEIN LIMIT OF BULK SILICON
【24h】

ATOMIC-SCALE THREE-DIMENSIONAL PHONONIC CRYSTALS WITH A LOWER THERMAL CONDUCTIVITY THAN THE EINSTEIN LIMIT OF BULK SILICON

机译:原子电导率低于散装硅的爱因斯坦极限的原子级三维光子晶体

获取原文

摘要

Extensive research about superlattices with a very low thermal conductivity was performed to design thermoelectric materials. Indeed, the thermoelectric figure of merit ZT varies with the inverse of the thermal conductivity but is directly proportional to the power factor. Unfortunately, as nanowires, superlattices reduce heat transfer in only one main direction. Moreover, they often show dislocations owing to lattice mismatches. Therefore, fabrication of nanomaterials with a ZT larger than the alloy limit usually fails with the superlattices. Self-assembly is a major epitaxial technology to fabricate ultradense arrays of germaniums quantum dots (QD) in a silicon matrix for many promising electronic and photonic applications as quantum computing. We theoretically demonstrate that high-density three-dimensional (3-D) periodic arrays of small self-assembled Ge nanoparticles (i.e. the QDs), with a size of some nanometers, in Si can show a very low thermal conductivity in the three spatial directions. This property can be considered to design thermoelectric devices, which are compatible with the complementary metal-oxide-semiconductor (CMOS) technologies. To obtain a computationally manageable model of these nanomaterials, we simulate their thermal behavior with atomic-scale 3-D phononic crystals. A phononic-crystal period (supercell) consists of diamond-like Si cells. At each supercell center, we substitute Si atoms by Ge atoms in a given number of cells to form a box-like Ge nanoparticle. The phononic-crystal dispersion curves, which are computed by classical lattice dynamics, are flat compared to those of bulk Si. In an example phononic crystal, the thermal conductivity can be reduced below the value ofonly 0.95 W/mK or by a factor of at least 165 compared to bulk silicon at 300 K. Close to the melting point of silicon, we obtain a larger decrease of the thermal conductivity below the value of 0.5 W/mK, which is twice smaller than the classical Einstein Limit of single crystalline Si. In this paper, we use an incoherent-scattering approach for the nanoparticles. Therefore, we expect an even larger decrease of the phononic-crystal thermal conductivity when multiple-scattering effects, as multiple reflections and diffusions of the phonons between the Ge nanoparticles, will be considered in a more realistic model. As a consequence of our simulations, a large ZT could be achieved in 3-D ultradense self-assembled Ge nanoparticle arrays in Si. Indeed, these nanomaterials with a very small thermal conductivity are crystalline semiconductors with a power factor that can be optimized by doping using CMOS-compatible technologies, which is not possible with other recently-proposed nanomaterials.
机译:对具有极低导热率的超晶格进行了广泛的研究,以设计热电材料。实际上,热电性能因数ZT随导热系数的变化而变化,但与功率因数成正比。不幸的是,作为纳米线,超晶格仅在一个主要方向上减少了热传递。而且,由于晶格失配,它们经常显示出位错。因此,具有超晶格的ZT大于合金极限的纳米材料的制造通常会失败。自组装是一种主要的外延技术,用于在硅基质中制造锗量子点(QD)的超致密阵列,用于许多有希望的电子和光子应用,如量子计算。我们从理论上证明,硅中自组装的小型Ge纳米粒子(即QD)的高密度三维(3-D)周期阵列在Si中可以显示出非常低的热导率,这在纳米空间中具有几纳米的大小。指示。在设计与互补金属氧化物半导体(CMOS)技术兼容的热电设备时,可以考虑使用此属性。为了获得这些纳米材料的可计算管理模型,我们用原子级3-D声子晶体模拟了它们的热行为。声子晶体周期(超级电池)由类金刚石Si电池组成。在每个超级电池中心,我们在给定数量的细胞中用Ge原子代替Si原子,从而形成盒状Ge纳米粒子。与块状硅相比,通过经典晶格动力学计算出的声子-晶体色散曲线是平坦的。在示例声子晶体中,可以将热导率降低到低于 相对于300 K的块状硅,仅为0.95 W / mK或至少1​​65倍。接近硅的熔点,我们在0.5 W / mK的值以下获得了更大的热导率降低,是0.5 W / mK的两倍小于单晶硅的经典爱因斯坦极限。在本文中,我们对纳米粒子使用了非相干散射方法。因此,我们预计,当在更现实的模型中考虑多重散射效应时,声子晶体的热导率会出现更大的下降,因为Ge纳米粒子之间的声子会发生多次反射和扩散。作为我们模拟的结果,可以在Si中的3-D超密集自组装Ge纳米粒子阵列中实现较大的ZT。实际上,这些导热系数非常小的纳米材料是具有功率因数的晶体半导体,可以通过使用CMOS兼容技术进行掺杂来优化功率因数,而其他最近提出的纳米材料则无法实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号