首页> 外文会议>Proceedings of the Combustion Institute >Shock tube measurements of ignition delay timesand OH time-histories in dimethyl ether oxidation
【24h】

Shock tube measurements of ignition delay timesand OH time-histories in dimethyl ether oxidation

机译:冲击管在二甲醚氧化中的点火延迟时间和OH时间历程的测量

获取原文

摘要

Ignition delay times and OH concentration time-histories were measured in DME/O2/Ar mixturesbehind reflected shock waves. Initial reflected shock conditions covered temperatures (T5) from 1175 to1900 K, pressures (P5) from 1.6 to 6.6 bar, and equivalence ratios (Φ) from 0.5 to 3.0. Ignition delay timeswere measured by collecting OH* emission near 307 nm, while OH time-histories were measured using laserabsorption of the R1(5) line of the A–X(0,0) transition at 306.7 nm. The ignition delay times extended theavailable experimental database of DME to a greater range of equivalence ratios and pressures. Measuredignition delay times were compared to simulations based on DME oxidation mechanisms by Fischer et al.[7] and Zhao et al. [9]. Both mechanisms predict the magnitude of ignition delay times well. OH time-historieswere also compared to simulations based on both mechanisms. Despite predicting ignition delaytimes well, neither mechanism agrees with the measured OH time-histories. OH Sensitivity analysis wasapplied and the reactions DME (→) CH3O+ CH3 and H + O2 (→) OH + O were found to be most important.Previous measurements of DME (→) CH3O+CH3 are not available above 1220 K, so the rate wasdirectly measured in this work using the OH diagnostic. The rate expression k[1/s] = 1.61×079 T-18.4exp(-58600/T), valid at pressures near 1.5 bar, was inferred based on previous pyrolysis measurementsand the current study. This rate accurately describes a broad range of experimental work at temperaturesfrom 680 to 1750 K, but is most accurate near the temperature range of the study, 1350–1750 K. When thisrate is used in both the Fischer et al. And Zhao et al. Mechanisms, agreement between measured OH andthe model predictions is significantly improved at all temperatures.
机译:在DME / O2 / Ar混合物中测量了点火延迟时间和OH浓度的时间历史 背后反射出冲击波。初始反射冲击条件涵盖的温度(T5)从1175至 1900 K,压力(P5)从1.6到6.6 bar,当量比(Φ)从0.5到3.0。点火延迟时间 通过收集307 nm附近的OH *发射来测量OH,而使用激光测量OH的时间历史 A–X(0,0)跃迁的R1(5)线在306.7 nm处的吸收。点火延迟时间延长了 可用的DME实验数据库,以了解更大的当量比和压力范围。实测 点火延迟时间与Fischer等人基于DME氧化机理的模拟进行了比较。 [7]和Zhao等。 [9]。两种机制都能很好地预测点火延迟时间的大小。 OH时间历史 还与基于这两种机制的模拟进行了比较。尽管预测点火延迟 时间很好,两种机制都与测得的OH时间历史不一致。 OH灵敏度分析原为 应用DME(→)CH3O + CH3和H + O2(→)OH + O的反应最为重要。 DME(→)CH3O + CH3的先前测量值在1220 K以上不可用,因此速率为 在这项工作中直接使用OH诊断进行测量。速率表达式k [1 / s] = 1.61×079 T-18.4 根据先前的热解测量推断出exp(-58600 / T)在1.5 bar的压力下有效 和当前的研究。该速率准确地描述了在温度下的广泛实验工作 从680到1750 K,但在研究温度范围1350–1750 K附近最准确。 Fischer等人均使用了该比率。和赵等。机理,被测OH与 在所有温度下,模型预测均得到显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号