首页> 外文会议>OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges >Hunting sea mines with UUV-based magnetic and electro-optic sensors
【24h】

Hunting sea mines with UUV-based magnetic and electro-optic sensors

机译:使用基于UUV的磁和电光传感器狩猎海雷

获取原文

摘要

The US Navy (USN) has recognized the need for effective buried-mine hunting as one of its Organic Mine Countermeasures (MCM) Future Naval Capabilities. Current thinking envisions a two-step process for identifying buried mines. First, an initial survey, or Search-Classify-Map (SCM) mission, will be performed using low-frequency synthetic aperture sonar (SAS). Second, a Reacquire-and-Identify (RI) mission will provide confirmatory final classification by reacquiring the target, at close range, with magnetic, acoustic, and electro-optic sensors, and evaluating properties such as geometric details and magnetic moment that can be fused to identify or definitively classify the object. The goal is to demonstrate a robust capability to identify buried sea mines through sensor fusion. Specifically, the classification results of a passive magnetic sensor and an electro-optic sensor will be generated for fusion with the results from a short-range bottom-looking sonar, with all three sensors co-residing and operating simultaneously on an Unmanned Underwater Vehicle (UUV). The Bluefinl2 Buried Mine Identification (BMI) System will be used as the platform to develop a capability for the identification of buried mines. This system houses the bottom looking sonar, the Real-time Tracking Gradiometer (RTG), and an Electro-Optic Imager (EOT). This paper will address the applications of the RTG, EOI, and data fusion results with bottom looking sonar. The objective for the RTG is the enhancement of the processing that extracts target locations and magnetic moments from the raw RTG data. In particular, we are adding a capability to conduct real-time processing capability to provide autonomous target classification and localization results soon after the UUV passes the target, while the system is still performing the mission. These results will be shared with the vehicle or other sensors for transmission back to a base station when the vehicle surfaces. The objectives for the EOI include- additions to the control software and the development of a set of versatile image processing techniques. A significant goal is to develop the ability to make images viewable remotely over the vehicle's RF link. This allows for a quick review of contacts and improved flexibility in mission planning and execution. Image processing goals included the development of image enhancement algorithms that could be applied to all EOI data. The intent of the enhancement algorithms is to enhance image contrast and sharpness to better differentiate targets from background and increase target detail. The software will be used to batch process large amounts of raw EOI images and save them in a format so that the user can scroll through the images using a standard image viewer. In 2008, the Bluefinl2 BMI system participated in multiple sea tests. The data collected from these missions proved that sensor fusion aboard an UUV was possible. Post Mission Analysis (PMA) also concluded that data fusion was successful. Both the RTG and the EOI participated in sea tests of the Bluefinl2 BMI System to evaluate, optimize and demonstrate a BMI capability. Specifically in 2008, this system was demonstrated at Panama City, FL and at AUVfest 2008 in Newport, RI. This paper focuses on the 2008 sea testing using the modified RTG and the EOI sensors and the ability to use near real-time detection.
机译:美国海军(USN)已经认识到有效地进行地雷搜寻的必要性,这是其有机地雷对策(MCM)未来海军能力之一。当前的想法设想了识别埋藏地雷的两步过程。首先,将使用低频合成孔径声纳(SAS)进行初始调查或搜索分类地图(SCM)任务。其次,重新获取和识别(RI)任务将通过使用磁,声和电光传感器在近距离重新获取目标,并评估诸如几何细节和磁矩等属性来提供确认的最终分类。融合以识别或确定对象的分类。目的是展示一种强大的能力,可以通过传感器融合识别潜伏的海雷。具体来说,将生成无源磁传感器和电光传感器的分类结果,以便与短距离仰视声纳的结果融合,所有这三个传感器在无人水下航行器上同时驻留并同时运行( UUV)。 Bluefinl2地下矿山识别(BMI)系统将用作开发识别地下矿山能力的平台。该系统装有底部声纳,实时跟踪梯度仪(RTG)和光电成像器(EOT)。本文将探讨采用底部声纳的RTG,EOI和数据融合结果的应用。 RTG的目标是增强处理能力,以从原始RTG数据中提取目标位置和磁矩。特别是,我们增加了执行实时处理功能的功能,以在UUV通过目标后立即提供自主目标分类和定位结果,而系统仍在执行任务。这些结果将与车辆或其他传感器共享,以便在车辆出现地面时传输回基站。意向书(EOI)的目标包括- 除了控制软件外,还开发了一套通用的图像处理技术。一个重要的目标是开发使图像可以在车辆的RF链接上远程查看的功能。这样可以快速检查联系人,并提高任务计划和执行的灵活性。图像处理目标包括开发可应用于所有EOI数据的图像增强算法。增强算法的目的是增强图像对比度和清晰度,以更好地将目标与背景区分开并增加目标细节。该软件将用于批量处理大量原始EOI图像,并将其保存为某种格式,以便用户可以使用标准图像查看器滚动浏览图像。 2008年,Bluefinl2 BMI系统参加了多次海试。从这些任务中收集的数据证明,在UUV上进行传感器融合是可能的。任务后分析(PMA)还得出结论,数据融合是成功的。 RTG和EOI都参加了Bluefinl2 BMI系统的海试,以评估,优化和证明BMI能力。特别是在2008年,该系统在佛罗里达州巴拿马城和罗德岛州纽波特市的AUVfest 2008上进行了演示。本文重点介绍了使用改进的RTG和EOI传感器进行的2008年海上测试以及使用近实时检测的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号