首页> 外文会议>International conference on computer systems and technologies and workshop for PhD students in computing 2009 >Highly Scalable Dynamically Reconfigurable Systolic Ring-Architecture for DSP Applications
【24h】

Highly Scalable Dynamically Reconfigurable Systolic Ring-Architecture for DSP Applications

机译:适用于DSP应用的高度可扩展的动态可重构脉动环体系结构

获取原文
获取外文期刊封面目录资料

摘要

Microprocessors are today getting more and moreinefficient for a growing range of applications. Itsprinciples -The Von Neumann paradigm[3]- based on thesequential execution of algorithms will no longer be ableto cope with the kind of highly computing intensiveapplications of multimedia world.Nowadays approaches to deal with these limitationsconsist in the following:- The first, and most natural way to increase thecomputing power is obviously to decrease the cycleexecution time, thanks to new silicon technology: Thefunctional frequencies for the newcomers CPUs are nowgetting on the way to 2 GHz.- The second approach is co-design. The intended generalpurpose CPU will confide the computation of the mosttime demanding applications to a dedicated core. Themost famous example are PC graphic cards whichmanage all the 2D and 3D display operations that evenhigh-end CPUs are not able to handle efficiently.Both methods are not satisfying. The first one quicklyfinds its limitations in however limited functionalfrequencies and power consumption reduction, as thesecond requires the design of a new core for eachintended algorithm. New parallel execution basedmachine paradigms must be considered. Thanks to theirhigh level of flexibility structurally programmablearchitectures are potentially interesting candidates toovercome classical CPUs limitations.Based on a parallel execution model, we present in thispaper a new dynamically reconfigurable architecture,dedicated to data oriented applications acceleration.Principles, realizations and comparative results will beexposed for some classical applications, targeted ondifferent architectures.
机译:如今,微处理器在越来越多的应用中正变得越来越低效。其原理-基于这些算法的频繁执行的冯·诺依曼范式[3]-将不再能够应对多媒体世界中高度计算密集型的应用。得益于新的硅技术,提高计算能力的自然方法显然是减少了周期执行时间:新来的CPU的功能频率现在已经接近2 GHz。-第二种方法是协同设计。预期的通用CPU将把最苛刻的应用程序的计算委托给专用内核。最著名的例子是PC图形卡,它管理所有2D和3D显示操作,即使高端CPU也无法有效地处理这两种方法。第一个很快发现了它在功能频率和功耗降低方面的局限性,第二个则需要为每种预期的算法设计一个新的内核。必须考虑新的基于并行执行的机器范例。由于其高度的灵活性,结构可编程体系结构可能是克服经典CPU限制的潜在候选者。基于并行执行模型,我们在本文中提出了一种新的可动态重配置的体系结构,致力于面向数据的应用程序加速。针对不同架构的一些经典应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号